This paper examines the impact of a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (NSF S-STEM) Program at a large, Minority-Serving institution in the western U.S. Despite growing efforts to diversify STEM fields, underrepresented minority (URM) students continue to face significant challenges in persistence and success. This scholarship program addresses these challenges by providing financial support, faculty and peer mentorship, and skills development opportunities to academically talented and low-income URM STEM students. This study evaluates how participation in the program enhances key noncognitive skills, such as students' sense of belonging, leadership and collaboration skills, and science identity, which are critical to STEM persistence. Using both survey and university-based data among the 47 participating scholars, results reveal that program participants report strong levels of sense of belonging, high efficacy in leadership and collaboration skills, and strong science/math identities. Additionally, compared to university rates, scholarship students showed above-average retention and graduation rates, with the majority pursuing graduate studies or careers in STEM. These findings highlight the importance of comprehensive support programs that integrate financial aid, mentorship, and professional development to promote persistence and success among URM students in STEM fields.
more »
« less
Strategies to Recruit and Retain Students in Physical Sciences and Mathematics on a Diverse College Campus
This paper presents implementation details and findings of an NSF-funded S-STEM scholarship program consisting of many high-impact practices to recruit and retain students in the Physical Sciences and Mathematics programs, particularly first-generation and underrepresented minority students. In particular, we discuss how the program utilizes three key strategies to improve persistence and retention in a STEM pipeline including access to financial resources, community building, and faculty mentorship at critical transitions. While the rate of underrepresented minority (URM) students within the general Physical Sciences and Mathematics program on campus fluctuates at around 35%, this scholarship program recruits at a much higher rate of URM students at nearly 61%. Of the 44 students receiving support for at least one semester, 100% either graduated or continued with their original major, including students who discontinued from the program due to low GPA or lack of financial need. Among the program’s positive outcomes, students experienced increased motivation for success, and readiness for graduate studies or the workforce.
more »
« less
- Award ID(s):
- 0966039
- PAR ID:
- 10018903
- Date Published:
- Journal Name:
- Journal of college science teaching
- Volume:
- 45
- Issue:
- 3
- ISSN:
- 0047-231X
- Page Range / eLocation ID:
- 14 - 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The persistence and attrition of underrepresented minority (URM) students in science, technology, engineering and mathematics (STEM) continues to remain a steadfast problem in education and the workforce. Research has shown that educators, administrators, and policy makers all play a vital role in shaping the future generation of STEM education, programs and the workforce, however, much of the research is deficient in providing URM student perceptions on how key factors such as student engagement, financial support, higher education preparation and institutional environment all impact their persistence in the STEM pipeline. This study employs qualitative research methods, semi-structured interviews and casual conversations to gain insight on common trends for the persistence of four (2 males, 2 females) URM students that were enrolled in a 2012 Summer Bridge Program at Mississippi State University (MSU), a predominately large white institution (PWI). Within this study, emphasis will be placed on the engineering branch of STEM. The research found that small diverse organizations such as NSBE and IMAGE along with financial support in the form of scholarships and alumni waivers, and pre-freshmen summer engineering programs such as Summer Bridge played a major role in URM student persistence in engineering disciplines.more » « less
-
Results will be presented from a 5-year NSF S-STEM scholarship program for academically talented women in engineering with financial need. Elizabethtown College’s Engineering Practices with Impact Cohort (EPIC) Scholarship program was launched with an NSF S-STEM grant awarded in 2013. The program developed a pathway for academically talented and financially needy women interested in engineering to successfully enter the STEM workforce. The program targeted three critical stages: 1) recruiting talented women into the ABET-accredited engineering program and forming a cohort of scholars, 2) leveraging and expanding existing high impact practices (including an established matriculation program, living-learning community, collaborative learning model, focused mentoring, and undergraduate research) to support women scholars during their college experience, and 3) mentoring scholars as they transitioned to the STEM workforce or graduate programs. The goals of the scholarship program were to increase the number and percent of women entering engineering at our institution and to increase the graduation/employment rate of EPIC scholars beyond that of current engineering students and beyond that of national levels for women engineers. At the end of this grant, we have roughly doubled the number of women (22.7%) and underrepresented minority students (14%) in the engineering program. This is comparable to the 2016 national average of 20.9% women and 20.6% underrepresented minority bachelor's graduates in engineering. We have also remained at a consistently high level of enrollment and retention of low-income (18.6% Pell-eligible) and first-generation college students (61%). 83% of the scholars have been retained in the engineering program or have graduated with an engineering degree, which is above the institutional and national average. The remaining scholars transferred to another major but have been retained at the institution. All of the scholars participated in a living-learning community, tutoring, focused mentoring, and a women engineers club. Almost all participated in a pre-matriculation program. 17% of the scholars additionally had an undergraduate research experience and 28% studied abroad. 100% of the scholars had engineering workforce jobs or graduate school acceptances at the time of graduation. This program successfully increased the population of underrepresented minority, low-income, and first-generation women entering the engineering workforce.more » « less
-
This research paper examines retaining traditionally underrepresented minorities (URM) in STEM fields. The retention of URM students in STEM fields is a current area of focus for engineering education research. After an extensive literature review and examination of best practices in retaining the targeted group, a cohort-based, professional development program with a summer bridge component was developed at a large land grant institution in the Mid-Atlantic region. One programmatic goal was to increase retention of underrepresented students in the engineering college which, ultimately, is expected to increase diversity in the engineering workforce. The program has a strong focus on cohort building, teamwork, mentorship, and developing an engineering identity. Students participate in a week-long summer bridge component prior to the start of their first semester. During their first year, students take a class as a cohort each semester, participate in an industrial site visit, and interact with faculty mentors. Since 2016 the program has been funded by a National Science Foundation S-STEM grant, which provides scholarships to eligible program participants. Scholarships start at $4,500 during year one, and are renewable for up to five years, with an incremental increase of $1000 annually for years one through four. Even with the professional development program providing support and scholarships alleviating the financial burden of higher education, students are still leaving engineering. The 2016-2017 cohort consisted of five scholarship recipients, of which three remained in engineering as of fall 2018, the beginning of their third year. The 2017-2018 cohort consisted of seven scholarship recipients, of which five remained in engineering as of fall 2018, their second year. While the numbers of this scholarship group are small, their retention rate is alarmingly below the engineering college retention rate. Why? This paper presents the results of additional investigations of the overall program cohorts (not only the scholarship recipients) and their non-program peers with the aim of determining predictors of retention in the targeted demographic. Student responses to three survey instruments: GRIT, MSLQ, and LAESE were analyzed to determine why students were leaving engineering, even though the program they participated in was strongly rooted in retention based literature. Student responses on program exit surveys were also analyzed to determine non-programmatic elements that may cause students to leave engineering. Results of this research is presented along with “lessons learned” and suggested actions to increase retention among the targeted population.more » « less
-
Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation.more » « less
An official website of the United States government

