Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state: SEDIMENT BULK DENSITY AND IGNITION LOSS
- Award ID(s):
- 1322658
- PAR ID:
- 10019580
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 4
- Issue:
- 4
- ISSN:
- 2328-4277
- Page Range / eLocation ID:
- 110 to 121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. Large subduction earthquakes can rupture the shallow part of the megathrust with unusually large displacements and tsunamis. The long duration of the seismic source and high upper-plate compliance contribute to large and protracted long-period motions of the outer upper plate. The resulting shear stress at the sediment–water interface in, for example, the Mw 9.0 2011 Tohoku–Oki earthquake could account for surficial sediment remobilization on the outer margin. We test this hypothesis by simulating in physical tank experiments the combined effects of high- and low-frequency seismic motions on sediment of different properties (chemistry, grain size, water content, and salinity). Our results show that low-frequency motion during a 2011-like earthquake can entrain several centimeters of surficial sediment and that entrainment can be enhanced by high-frequency vertical oscillations. These experiments validate a new mechanism of co-seismic sediment entrainment in deep-water environments.more » « less
-
Abstract Arctic coastlines are known to be rapidly eroding, but the fate of this material in the coastal ocean (and the sedimentary dynamics of Arctic continental shelves in general) is less well‐constrained. This study used summertime mooring data from the Alaskan Beaufort Shelf to study sediment‐transport patterns which are dominated by waves and wind‐driven currents. Easterly wind events account for most of the seasonal sediment transport, and serve to focus sediment on the inner shelf. This is a key finding because it means that sediment is readily available for wave‐driven resuspension and sea‐ice entrainment during fall storms. Sediment‐ice entrainment has been previously implicated as a major mechanism for Arctic Shelf erosion—and so the summertime focusing of sediment observed in this study may actually serve to enhance shelf erosion rather than promote shelf sediment accumulation. In a pan‐Arctic context, the Alaskan Beaufort Shelf is somewhat similar to the Laptev Sea Shelf, where previous work has shown that sediment is also focused during the summer months (but for different reasons related to estuarine‐like circulation under the Laptev plume). The Alaskan Beaufort Shelf example contrasts with previous work on the Canadian Beaufort Shelf, where dominant winds from the opposite direction (northwest) likely promote strong seaward dispersal of sediment rather than inner‐shelf convergence. This study thus highlights the importance of understanding dominant wind patterns when considering seasonal and inter‐annual storage, transport, and erosion of sediments from Arctic continental shelves.more » « less
-
Abstract Sediment regimes, i.e., the processes that recruit, transport, and store sediment, create the physical habitats that underpin river‐floodplain ecosystems. Natural and human‐induced disturbances that alter sediment regimes can have cascading effects on river and floodplain morphology, ecosystems, and a river's ability to provide ecosystem services, yet prediction of the response of sediment dynamics to disturbance is challenging. We developed the Sediment Routing and Floodplain Exchange (SeRFE) model, which is a network‐based, spatially explicit framework for modeling sediment recruitment to and subsequent transport through drainage networks. SeRFE additionally tracks the spatially and temporally variable balance between sediment supply and transport capacity. Simulations using SeRFE can account for various types of watershed disturbance and for channel‐floodplain sediment exchange. SeRFE is simple, adaptable, and can be run with widely available geospatial data and limited field data. The model is driven by real or user‐generated hydrographs, allowing the user to assess the combined effects of disturbance, channel‐floodplain interactions and particular flow scenarios on the propagation of disturbances throughout a drainage network, and the resulting impacts to reaches of interest. We tested the model in the Santa Clara River basin, Southern California, in subbasins affected by large dams and wildfire. Model results highlight the importance of hydrologic conditions on postwildfire sediment yield and illustrate the spatial extent of dam‐induced sediment deficit during a flood. SeRFE can provide contextual information on reach‐scale sediment balance conditions, sensitivity to altered sediment regimes, and potential for morphologic change for managers and practitioners working in disturbed watersheds.more » « less
An official website of the United States government

