skip to main content


Title: Equilibrium sediment exchange in the earth’s critical zone: evidence from sediment fingerprinting with stable isotopes and watershed modeling
Abstract Purpose The equilibrium sediment exchange process is defined as instantaneous deposition of suspended sediment to the streambed countered by equal erosion of sediment from the streambed. Equilibrium exchange has rarely been included in sediment transport studies but is needed when the sediment continuum is used to investigate the earth’s critical zone. Materials and methods Numericalmodeling in the watershed uplands and streamcorridor simulates sediment yield and sediment source partitioning for the Upper South Elkhorn watershed in Kentucky, USA.We simulate equilibrium exchange when uplandderived sediment simultaneously deposits to the streambed while streambed sediments erode. Sediment fingerprinting with stable carbon isotopes allowed constraint of the process in a gently rolling watershed. Results and discussion Carbon isotopes work well to partition upland sediment versus streambed sediment because sediment deposited in the streambed accrues a unique autotrophic, i.e., algal, fingerprint. Stable nitrogen isotopes do not work well to partition the sources in this study because the nitrogen isotope fingerprint of algae falls in the middle of the nitrogen isotope fingerprint of upland sediment. The source of sediment depends on flow intensity for the gently rolling watershed. Streambed sediments dominate the fluvial load for low and moderate events, while upland sediments become increasingly important during high flows and extreme events.We used sediment fingerprinting results to calibrate the equilibrium sediment exchange rate in the watershed sediment transport model. Conclusions Our sediment fingerprinting and modeling evidence suggest equilibrium sediment exchange is a substantial process occurring in the system studied. The process does not change the sediment load or streambed sediment storage but does impact the quality of sediment residing in the streambed. Therefore, we suggest equilibrium sediment exchange should be considered when the sediment continuumis used to investigate the critical zone.We conclude the paper by outlining future research priorities for coupling sediment fingerprinting with watershed modeling.  more » « less
Award ID(s):
1632888
NSF-PAR ID:
10097394
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Soils and Sediments
ISSN:
1439-0108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Water quality models serve as an economically feasible alternative to quantify fluxes of nutrient pollution and to simulate effective mitigation strategies; however, their applicability is often questioned due to broad uncertainties in model structure and parameterization, leading to uncertain outputs. We argue that reduction of uncertainty is partially achieved by integrating stable isotope data streams within the water quality model architecture. This article outlines the use of stable isotopes as a response variable within water quality models to improve the model boundary conditions associated with nutrient source provenance, constrain model parameterization, and elucidate shortcomings in the model structure. To assist researchers in future modeling efforts, we provide an overview of stable isotope theory; review isotopic signatures and applications for relevant carbon, nitrogen, and phosphorus pools; identify biotic and abiotic processes that impact isotope transfer between pools; review existing models that have incorporated stable isotope signatures; and highlight recommendations based on synthesis of existing knowledge. Broadly, we find existing applications that use isotopes have high efficacy for reducing water quality model uncertainty. We make recommendations toward the future use of sediment stable isotope signatures, given their integrative capacity and practical analytical process. We also detail a method to incorporate stable isotopes into multi-objective modeling frameworks. Finally, we encourage watershed modelers to work closely with isotope geochemists to ensure proper integration of stable isotopes into in-stream nutrient fate and transport routines in water quality models. Keywords: Isotopes, Nutrients, Uncertainty analysis, Water quality modeling, Watershed. 
    more » « less
  2. Abstract

    In the Ohio River (OR), backwater confluence sedimentation dynamics are understudied, however, these river features are expected to be influential on the system’s ecological and economic function when integrated along the river’s length. In the following paper, we test the efficacy of organic and inorganic tracers for sediment fingerprinting in backwater confluences; we use fingerprinting results to evidence sediment dynamics controlling deposition patterns in confluences used for wetland and marina functions; and we quantify the spatial extent of tributary drainages with wetland and marina features in OR confluences. Both organic and inorganic tracers statistically differentiate sediment from stream and river end‐members. Carbon and nitrogen stable isotopes produce greater uncertainty in fingerprinting results than inorganic elemental tracers. Uncertainty analysis of the nonconservative tracer term in the organic matter fingerprinting application estimates an apparent enrichment of the carbon stable isotopes during instream residence, and the nonconservativeness is quantified with a statistical approach unique to the fingerprinting literature. Wetland and marina features in OR confluences impact 42% and 11% of tributary drainage areas, respectively. Sediment dynamics show wetland and marina confluences experience deposition from river backwaters with longitudinally linear and nonlinear patterns, respectively, from sediment sources.

     
    more » « less
  3. We used spatial data from previously mapped preferential groundwater discharges throughout the Farmington River watershed in Connecticut and Massachusetts (https://doi.org/10.5066/P915E8JY) to guide water sample collection at known locations of groundwater discharging to surface water. In 2017 and 2019 - 2021, samples were collected during general river baseflow conditions (July ? November, less than 30.9 cms mean daily discharge (USGS gage 01189995, statistics 2010-2022) when the riverbank discharge points were exposed. We collected a suite of dissolved constituents and stable isotopes of water directly in the shallow saturated sediments of active points of discharge, and coincident stream chemical samples were also collected adjacent to locations of groundwater discharge. Data collected includes nutrients (NO3, NH4, Cl, SO4, PO4, dissolved organic carbon (DOC), and total nitrogen (TN)), greenhouse gases (CO2, CH4, and N2O), dissolved gases (N2, dissolved oxygen (DO)), conductivity, sediment characteristics, temperature, and spatial information. This dataset includes 2 main files: 1) Farmington_Chemistry_2017_2021.csv contains attribute information for each biogeochemical constituent collected at preferential groundwater discharges along the Farmington River network. 2)Farmington_Temporal_Cl_Rn_Iso_2020.csv contain attribute information for source characteristic data (Chloride, Radon, Isotope) collected at locations of repeat sampling at 5 groundwater seep faces along the Farmington River (Alsop and Rainbow Island). 
    more » « less
  4. Abstract

    Rivers and their hyporheic zones play an important role in nutrient cycling. The fate of dissolved inorganic nitrogen is governed by reactions that occur in the water column and streambed sediments. Sediments are heterogeneous both in term of physical (e.g., hydraulic conductivity) and chemical (e.g., organic carbon content) properties, which influence water residence times and biogeochemical reactions. Yet few modeling studies have explored the effects of both physical and chemical heterogeneity on nutrient transport in the hyporheic zone. In this study, we simulated hyporheic exchange in physically and chemically heterogeneous sediments with binary distributions of sand and silt in a low‐gradient meandering river. We analyzed the impact of different silt/sand patterns on dissolved organic carbon, oxygen, nitrate, and ammonium. Our results show that streambeds with a higher volume proportion of silt exhibit lower hyporheic exchange rates but more efficient nitrate removal along flow paths compared to predominantly sandy streambeds. The implication is that hyporheic zones with a mixture of inorganic sands and organic silts have a high capacity to remove nitrate, despite their moderate permeabilities.

     
    more » « less
  5. Abstract

    Input of organic matter into stream channels is the primary energy source for headwater ecosystems and ultimately carbon to the oceans and hence is an important component of the global carbon cycle. Here, we quantify organic‐rich fine sediment mobilization, transport, and storage in a Strahler fourth‐order stream during individual intermediate‐sized storm events. By combining measurements of fallout radionuclides (FRNs)7Be and210Pb and stable water isotopes with a conceptual model of suspended load trapping by channel margins, we find that the channel bed was consistently a source of suspended load to the channel margins. Relative to storage on the channel margins, suspended load export increased through the spring and summer, perhaps related to the in‐channel decomposition of organic debris as indicated by its FRN exposure age and changing bulk δ13C composition. Trapping of suspended load by riparian margins limits sediment transport distances, which, given sufficient discharge to fully suspend the load, is nearly independent of stream discharge for sub‐bankfull discharges. Limited data indicate that the fractional size of the channel margins where trapping occurs decreases with increasing watershed area. Increasing transport length and decreasing fractional margin area with increasing watershed area results in a systematic downstream decoupling of the channel from local terrestrial organic matter exchange. These findings provide a framework for understanding suspended load dynamics in formerly glaciated regions where sediment production and fluxes are generally low and thus the annual input of organic debris is a major component of suspended load budget.

     
    more » « less