skip to main content


Title: Candidate Vulnerability and Exposure to Counterattitudinal Information: Evidence From Two U.S. Presidential Elections: Candidate Vulnerability and Counterattitudinal Information
Award ID(s):
1149599
NSF-PAR ID:
10021531
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Human Communication Research
Volume:
42
Issue:
4
ISSN:
0360-3989
Page Range / eLocation ID:
577 to 598
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Access control and information flow are the two building blocks in the design of secure software. Of the two, access control seems ubiquitous, being widely used in operating systems, databases, firewalls, servers, web applications, and so on. The successes of information flow seem less obvious, and its benefits and potential underappreciated. Yet, when it comes to defending against malicious code, access control based defenses have proved susceptible to evasion, or they end up being so restrictive as to interfere with legitimate use. In this talk, I will argue that defenses based on information flow can be more discerning, as they utilize not only the operations performed but also their context, e.g., whether malicious actors could be exerting control over these operation or their key arguments. I will then describe successful applications of information flow to defend against every stage of a cyber attack campaign, including: (a) exploit mitigation for a wide range of software vulnerabilities, (b) malware containment across diverse OSes, including Linux, BSD, and Windows XP through Windows 10, and (c) attack campaign reconstruction, where we achieve a five to six orders of magnitude data reduction by applying our techniques. 
    more » « less
  2. Abstract

    This paper proposes a novel simulation‐based hybrid approach coupled with time‐dependent Bayesian network analysis to model multi‐infrastructure vulnerability over time under physical, spatial, and informational uncertainties while considering cascading failures within and across infrastructure networks. Unlike existing studies that unrealistically assume that infrastructure managers have full knowledge of all the infrastructure systems, the proposed approach considers a realistic scenario where complete information about the infrastructure network topology or the supply–demand flow characteristics is not available while estimating multi‐infrastructure vulnerability. A novel heuristic algorithm is proposed to construct a dynamic fault tree to abstract the network topology of any infrastructure. In addition, to account for the unavailability of exact supply–demand flow characteristics, the proposed approach constructs the interdependence links across infrastructure network systems using different simulated parameters considering the physical, logical, and geographical dependencies. Finally, using parameters for geographical proximity, infrastructure managers' risk perception, and the relative importance of one infrastructure on another, the multi‐infrastructure vulnerability over time is estimated. Results from the numerical experiment show that for an opportunistic risk perception, the interdependencies attribute to redundancies, and with an increase in redundancy, the vulnerability decreases. On the other hand, from a conservative risk perspective, the interdependencies attribute to deficiencies/liabilities, and the vulnerability increases with an increase in the number of such interdependencies.

     
    more » « less