skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Information Flow: A Unified Basis for Vulnerability Mitigation, Malware Defense and Attack Scenario Reconstruction (Keynote Presentation)
Access control and information flow are the two building blocks in the design of secure software. Of the two, access control seems ubiquitous, being widely used in operating systems, databases, firewalls, servers, web applications, and so on. The successes of information flow seem less obvious, and its benefits and potential underappreciated. Yet, when it comes to defending against malicious code, access control based defenses have proved susceptible to evasion, or they end up being so restrictive as to interfere with legitimate use. In this talk, I will argue that defenses based on information flow can be more discerning, as they utilize not only the operations performed but also their context, e.g., whether malicious actors could be exerting control over these operation or their key arguments. I will then describe successful applications of information flow to defend against every stage of a cyber attack campaign, including: (a) exploit mitigation for a wide range of software vulnerabilities, (b) malware containment across diverse OSes, including Linux, BSD, and Windows XP through Windows 10, and (c) attack campaign reconstruction, where we achieve a five to six orders of magnitude data reduction by applying our techniques.  more » « less
Award ID(s):
1918667
PAR ID:
10296445
Author(s) / Creator(s):
Date Published:
Journal Name:
ACM FEAST
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speculative execution attacks leverage the speculative and out-of-order execution features in modern computer processors to access secret data or execute code that should not be executed. Secret information can then be leaked through a covert channel. While software patches can be installed for mitigation on existing hardware, these solutions can incur big performance overhead. Hardware mitigation is being studied extensively by the computer architecture community. It has the benefit of preserving software compatibility and the potential for much smaller performance overhead than software solutions. This paper presents a systematization of the hardware defenses against speculative execution attacks that have been proposed. We show that speculative execution attacks consist of 6 critical attack steps. We propose defense strategies, each of which prevents a critical attack step from happening, thus preventing the attack from succeeding. We then summarize 20 hardware defenses and overhead-reducing features that have been proposed. We show that each defense proposed can be classified under one of our defense strategies, which also explains why it can thwart the attack from succeeding. We discuss the scope of the defenses, their performance overhead, and the security-performance trade-offs that can be made. 
    more » « less
  2. Federated Learning (FL) allows individual clients to train a global model by aggregating local model updates each round. This results in collaborative model training while main-taining the privacy of clients' sensitive data. However, malicious clients can join the training process and train with poisoned data or send artificial model updates in targeted poisoning attacks. Many defenses to targeted poisoning attacks rely on anomaly-detection based metrics which remove participants that deviate from the majority. Similarly, aggregation-based defenses aim to reduce the impact of outliers, while L2-norm clipping tries to scale down the impact of malicious models. However, oftentimes these defenses misidentify benign clients as malicious or only work under specific attack conditions. In our paper, we examine the effectiveness of two anomaly -detection metrics on three different aggregation methods, in addition to the presence of L2-norm clipping and weight selection, across two different types of attacks. We also combine different defenses in order to examine their interaction and examine each defense when no attack is present. We found minimum aggregation to be the most effective defense against label-flipping attacks, whereas both minimum aggregation and geometric median worked well against distributed backdoor attacks. Using random weight selection significantly deteriorated defenses against both attacks, whereas the use of clipping made little difference. Finally, the main task accuracy was directly correlated with the BA in the label-flipping attack and generally was close to the MA in benign scenarios. However, in the DBA the MA and BA are inversely correlated and the MA fluctuates greatly. 
    more » « less
  3. Rowhammer is an increasingly threatening vulnerability that grants an attacker the ability to flip bits in memory without directly accessing them. Despite efforts to mitigate Rowhammer via software and defenses built directly into DRAM modules, more recent generations of DRAM are actually more susceptible to malicious bit-flips than their predecessors. This phenomenon has spawned numerous exploits, showing how Rowhammer acts as the basis for various vulnerabilities that target sensitive structures, such as Page Table Entries (PTEs) or opcodes, to grant control over a victim machine. However, in this paper, we consider Rowhammer as a more general vulnerability, presenting a novel exploit vector for Rowhammer that targets particular code patterns. We show that if victim code is designed to return benign data to an unprivileged user, and uses nested pointer dereferences, Rowhammer can flip these pointers to gain arbitrary read access in the victim's address space. Furthermore, we identify gadgets present in the Linux kernel, and demonstrate an end-to-end attack that precisely flips a targeted pointer. To do so we developed a number of improved Rowhammer primitives, including kernel memory massaging, Rowhammer synchronization, and testing for kernel flips, which may be of broader interest to the Rowhammer community. Compared to prior works' leakage rate of .3 bits/s, we show that such gadgets can be used to read out kernel data at a rate of 82.6 bits/s. By targeting code gadgets, this work expands the scope and attack surface exposed by Rowhammer. It is no longer sufficient for software defenses to selectively pad previously exploited memory structures in flip-safe memory, as any victim code that follows the pattern in question must be protected. 
    more » « less
  4. Federated learning—multi-party, distributed learning in a decentralized environment—is vulnerable to model poisoning attacks, more so than centralized learning. This is because malicious clients can collude and send in carefully tailored model updates to make the global model inaccurate. This motivated the development of Byzantine-resilient federated learning algorithms, such as Krum, Bulyan, FABA, and FoolsGold. However, a recently developed untargeted model poisoning attack showed that all prior defenses can be bypassed. The attack uses the intuition that simply by changing the sign of the gradient updates that the optimizer is computing, for a set of malicious clients, a model can be diverted from the optima to increase the test error rate. In this work, we develop FLAIR—a defense against this directed deviation attack (DDA), a state-of-the-art model poisoning attack. FLAIR is based on ourintuition that in federated learning, certain patterns of gradient flips are indicative of an attack. This intuition is remarkably stable across different learning algorithms, models, and datasets. FLAIR assigns reputation scores to the participating clients based on their behavior during the training phase and then takes a weighted contribution of the clients. We show that where the existing defense baselines of FABA [IJCAI’19], FoolsGold [Usenix ’20], and FLTrust [NDSS ’21] fail when 20-30% of the clients are malicious, FLAIR provides byzantine-robustness upto a malicious client percentage of 45%. We also show that FLAIR provides robustness against even a white-box version of DDA. 
    more » « less
  5. The Windows registry stores a glut of information containing settings and data utilized by the Microsoft operating system (OS) and other applications. For example, information such as user credentials, installed programs, recently used applications and documents, accessed resources such as local, remote, and removable devices can all be found in this database. More revealingly, the registry also has time and date stamps that can help build a timeline of user activities. The Windows registry can be easily queried by either malicious or benign applications. This is possible through the Windows Application Program Interface (API) and other OS built-in utilities. In this paper, we develop and demonstrate a program able to collect and infer a user’s rich activities by accessing the Windows registry alone. This information, also referred to as the user’s digital footprint, can be used to devise an exploit or create a privacy threat. Our custom developed application will demonstrate how a user’s digital footprint can be acquired by a malicious application from a Windows registry, without alerting security software. In addition, this information can be exported to a set of comma delimited files, making it easy to import them into other analysis applications. 
    more » « less