Funded by the NSF Division of Computer and Network Systems, this grant establishes a new Research Experiences for Teachers (RET) Site at the University of South Alabama (USA). In the summer of 2021, eight middle school and high school teachers from two local public-school districts spent six weeks engaged with research activities on biologically-inspired computing systems. They worked on discovery-based research projects and obtained transdisciplinary research experience on biologically-inspired computing systems spanning application (cancer detection), algorithm (Spiking Neural Networks), architecture and circuit (synaptic memory design), and device (memristor). The USA faculty mentors, curriculum development specialist from school districts, Instructional Coach from Science/Mathematics faculty at USA coached participants as they designed standards-compliant curriculum modules and conducted professional development activities. The implementation details of the summer program and the evaluation results are presented in this paper.
more »
« less
Particle Engineering Research from the NSF ERC Research Experience for Teachers (RET) Program at NJIT
We aim to give highlights of particle engineering research from the New Jersey Institute of Technology (NJIT)’s Research Experiences for Teachers (RET) Program, which is a collaboration of the NSF Engineering Research Center for Structured Organic Particulate Systems (ERC-SOPS) and the Center for Pre-College Programs. This NSF-funded program engaged pairs of 14 high school teachers in 2015 summer research program, where they performed research on various particulate materials and processes relevant to pharmaceutical products. In addition, various faculty and educational experts delivered workshops on technical writing, best research practice, effective collaboration in a team, pharmaceutical industry and process–formulation development, educational module development, etc. The teachers acquired the skills and knowledge of research and the subject of particle engineering and pharmaceutical engineering that they incorporated into their teaching practice. In the research component of the program, the teachers collaborated with graduate student mentors under the guidance of professors and worked on various particle–pharmaceutical engineering projects. In the educational component, the teachers came up with a professional development plan and prepared “educational modules”, which were delivered to high school students. While this presentation will expose few educational highlights including sample modules developed by the teachers, it will mainly focus on two summer research projects about the bioavailability enhancement of poorly water-soluble drugs via drug nanoparticle composites and drug nanoparticle-laden polymer strip films. Through application of particle engineering approaches such as nanoparticle formation–stabilization and drug encapsulation within hydrophilic polymeric matrices, we have ensured fast redispersibility of drug nanoparticles from solid dosages and demonstrated significant improvement of the dissolution rate of poorly water-soluble drugs.
more »
« less
- Award ID(s):
- 1301071
- PAR ID:
- 10022426
- Date Published:
- Journal Name:
- AICHE Annual Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper introduces the background and establishment of the first Research Experience for Teachers (RET) Site in Arkansas, supported by the National Science Foundation. The Arkansas Data Analytics Teacher Alliance (AR-DATA) program partners with school districts in the Northwest Arkansas region to promote research-driven high school analytics curriculum and education to reach underserved students, such as those from rural areas. At least thirty 9th-12th grade mathematics, computer science, and pre-engineering teachers will participate in AR-DATA and work with faculty mentors, graduate students, curriculum coaches, and industry experts in a six-week RET Summer Program and academic-year follow up to develop and disseminate learning modules to enhance current curriculum, attain new knowledge of data analytics and engineering applications, and benefit professionally through the RET program activities. The learning modules developed will reflect current cutting-edge analytics research, as well as the development needs of next-generation analytics workforce.more » « less
-
National Science Foundation (NSF) funded Research Experiences for Teachers (RET) programs provide opportunities for professional development for teachers. The goal of the RET site at North Dakota State University (NDSU), established in May 2020 (NSF Awards #1953102 and #2224135), was to increase the knowledge of secondary (6th to 12th grade) educators in the use of civil engineering to mitigate natural disasters and their ability to prepare their students to become leaders in STEM disciplines. The primary goal of this study is to assess the effectiveness of the professional development provided in preparing participants to teach STEM topics in their classrooms. The study utilized a mixed method approach and an external evaluator to present data on the responses to two online surveys and a self-interview conducted with the secondary educators in the Summer 2021 NDSU RET cohort. Three themes emerged: (1) difficulty with math, (2) lack of connection/examples, and (3) issues with open-endedness and time to get a response. Nearly all the teachers noted that experiments and simulations with data were helpful strategies in engaging their students in STEM topics. They found value in connecting these topics with real-world problems in the student’s lives. Teachers had increased knowledge about the research projects, real-world applications, and other ways to engage their students in STEM (specifically, civil engineering). Their knowledge was further increased by their interactions with other teachers in the RET program as well as through the presentations that the other teachers delivered during the summer activities.more » « less
-
The United Nations Sustainable Development Goals (UN SDGs) are the focus for a Research Experience for Teachers (RET) Site in Engineering at X University. The relevant and meaningful contexts of the SDGs allow middle and high school teachers and their students to easily make connections between research in a university lab setting to Science, Technology, Engineering, and Math (STEM) concepts in their classroom. Lesson plans inspired by the UN SDGs research experience were developed as an “integrated STEM” problem solving activity by each of the RET teachers. Ten (10) teachers comprising of both pre-service and in-service middle or high school teachers have participated in each cohort over the two years of the NSF RET grant thus far. Six weeks of authentic summer research takes place in 5 different faculty labs at X University under the mentorship of faculty and their graduate students or postdoc. Examples of the research projects include “Photocatalysis for Clean Energy and Environment,” “Genetically Engineering Plasmid DNA molecules to address Tuberculosis Antibiotic Resistance,” and “New Water-Based Technology for Plastic Recycling.” RET participants also attend a weekly coffee session to help guide the teachers through the research process and a weekly ½-day professional development (PD) session to translate the research experience into a classroom lesson plan that aligns to state standards, as well as evidence-backed curriculum design and teaching strategies. Teacher cohort building and community is fostered through group lunches and additional activities (e.g., coordinated lab visits, behind the scenes tour of a local science museum, and industry panel). For evaluation of the RET program, pre/post-surveys measured the teacher’s self-reported ability, confidence, understanding, and frequency of use of the Engineering Design Process (EDP), Integrated STEM, and the UN Sustainable Development Goals. Formative assessment was conducted throughout the summer on various aspects of the RET through surveys and regular check-ins with the teachers. At the end of the summer, focus groups were conducted by an external evaluator for both the teacher participants and the research mentors. Both teachers and mentors declared the program was well planned and executed. The teachers developed close bonds and connections, learned a lot from each other, had meaningful research experiences, and developed a sense of community. The research mentors reported that the teachers provided useful research contributions, were enthusiastic about the research, had genuine lab experiences, developed professional skills, and built good community connections. Areas for improvement included clear expectations for everyone, reducing steep learning curves, and consistency of mentoring across the labs. The RET program continues into the academic year with occasional meetings to report on the implementation of their research-inspired lesson plan in their classroom. The RET participants share that they are bringing in the “real world” relevance to their students with an integrated STEM lens (e.g., climate change and UN SDGs) and that they refer back to their own lab experiences (e.g., importance of measuring chemicals accurately). The research experience has made several positive impacts on the teacher participants that also benefit their students.more » « less
-
null (Ed.)Over the past two decades, I have been actively involved in teaching astronomy and astrophysics to Chicago Public School (CPS) students and their teachers, in collaboration with various groups as well as by myself. Valuable resources that we have created for schools include the Multiwavelength Astronomy Website, with modules for infrared, optical, ultraviolet, X-ray and gamma-ray astronomy. The content of each lesson is derived from interviews with scientists, archived oral histories, and/or memoirs. Lessons are evaluated by a science educator and at least one subject matter expert before being produced for the web. They are supplemented by NASA media, archival material from the University of Chicago Library and other archives, and participant contributed photographs, light curves, and spectra. Summer programs provided training to CPS teachers to use the resources in their classrooms. Currently, I lead the Chicago Area Research Mentoring (CHARM) initiative. In the past academic year I worked with a class of 17 diverse 11th grade honors students at the University of Chicago Charter School, Woodlawn. Through frequent lectures (∼ every 4 weeks), these students were exposed to astrophysical topics and concepts not normally covered in a school curriculum. CHARM aims to develop the student's critical thinking, introduce them to astrophysical research methods and techniques, and prepare them for a career in science, technology, engineering and mathematics (STEM), particularly a research-oriented one. In this article, I highlight some projects, educational resources, results achieved, and lessons learned along the way.more » « less
An official website of the United States government

