skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early Experience with Computer-supported Collaborative Exercises for a 2nd Semester Java Class
This paper reports on two semesters experience with computer-mediated group discussion exercises in a CS2 computer programming class. The class is a gateway for computer science and computer engineering students, where many students have difficulty succeeding well enough to proceed in their major. The exercises focus on Java concepts. They are designed to require students to rely on each other, but also be individually accountable. Learning gains measured in this trial have been mixed, with the least prepared student (as measured by pretest) in each discussion group showing the highest learning gains, while best prepared student in the discussion group showed score reductions on average. This paper reports on first year results of learning gains and of surveys of student experience with the exercises  more » « less
Award ID(s):
1504918
PAR ID:
10023125
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of computing sciences in colleges
Volume:
32
Issue:
2
ISSN:
1937-4771
Page Range / eLocation ID:
68-76
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. COMPS computer-mediated group discussion exercises are being added to a second-semester computer programming class. The class is a gateway for computer science and computer engineering students, where many students have difficulty succeeding well enough to proceed in their major. This paper reports on first results of surveys on student experience with the exercises. It also reports on the affective states observed in the discussions that are candidates for analysis of group functioning. As a step toward computer monitoring of the discussions, an experiment in using dialogue features to identify the gender of the participants is described. 
    more » « less
  2. Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who were overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments. 
    more » « less
  3. The curriculum for a graduate Computer Networking course in Computer Science typically includes activities that help students gain a variety of practical skills that complement the theoretical knowledge they learn during the course. These skills are developed through exercises that present students with scenarios in which they are to understand or cause specific communication behavior over a network. These exercises are constrained by the computer resources that students use for learning. Ideally those resources can be tuned to increase the fidelity of the network that a student is managing—and ultimately allow each student to fully control their own network. This paper describes the motivation, process, and challenges of delivering a graduate course in networking using resources on FABRIC—a publicly-funded, international testbed for research in networking. The paper analyzes the experience of teaching three graduate courses on networking, and reflects on using FABRIC to (1) ensure that students have equal access to a high-quality network environment (rather than rely on students’ individual laptops or self-managed school equipment), and (2) exploit the research testbed’s flexibility to develop a rich range of exercises for students. We discuss our lessons learned and share advice for other instructors. 
    more » « less
  4. null (Ed.)
    Abstract Student presentation based effective teaching (SPET) approach was designed to engage students with different mindsets and academic preparation levels meaningfully and meet several ABET student learning outcomes. SPET method requires that students prepare themselves by guided self-study before coming to the class and make presentations to teach the whole class by (a) presenting complex concepts and systems appealingly and engagingly, and most importantly (b) serving as the discussion platform for the instructor to emphasize on complex concepts from multiple angles during different presentations. In class, SPET presentations address the conceptual questions that are assigned 1–2 weeks before the presentation day. However, the SPET approach becomes impractical for large class sizes because (i) during one class period all the students can not present, (ii) many students do not make their sincere efforts. This paper focuses on the second modification of SPET to make it practical for large classes. The method reported in this paper was tested on MECH 462 Design of Energy System Course. Unlike the first modified approach, all the students were expected to submit the response to the preassigned questions before coming to the class. In class, SPET group presentations were prepared by the group of 3–6 students, who prepared themselves by doing SPET conceptual questions individually. Students communicated with each other to make a cohesive presentation for ∼30 min. In two classes per week, we covered 5–6 group presentations to do enough discussions and repetition of the core concepts for a more in-depth understanding of the content. During the presentation, each student was evaluated for (a) their depth of understanding, (b) understanding other parts of the presentation covered by other teammates, and (c) quality of presentation and content. The student who appeared unprepared in the class group presentation were provided direct feedback and resources to address concerning areas. SPET approach was applied in the online mode during the campus shut down due to COVID-19. SPET was immensely effective and helped to complete the course learning outcomes without interruptions. SPET could be customized for the online version without any additional preparation on the instructor part. 
    more » « less
  5. Spatial skills are fundamental to learning and developing expertise in engineering. This paper describes a new virtual and physical manipulatives (VPM) technology that this research team recently developed to enhance undergraduate engineering students’ spatial skills. This technology consists of ten manipulatives spanning a variety of levels of geometrical complexity. Each manipulative is authentic due to their real-world engineering applications that were chosen to stimulate student interest in engineering. A computer program was developed to connect virtual and physical manipulatives, allowing students to receive spatial training anytime, anywhere through the Internet. Quasi-experimental research, involving an intervention group (n = 37) and a control group (n = 34), was conducted. Each group completed a pre- and post-test using the same assessment instrument that measured students’ spatial skills. Normality tests were conducted. The results show that the data involved in the present study did not have a normal distribution. Thus, non-parametric statistical analysis was performed, including descriptive analysis, correlation analysis, and Mann-Whitney U tests. The results show that the mean value of normalized learning gains is 41.2% for the intervention group, which is 33% higher than that for the control group (8.2%). A statistically significant difference exists between the intervention and control groups in terms of normalized learning gains (P < 0.01). The new VPM technology developed from the present study has a medium effect size (0.34) on improving students’ spatial skills. 
    more » « less