skip to main content

Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who were overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
EDUlearn 2022, 14th annual International Conference on Education and New Learning Technologies Palma de Mallorca (Spain). 4th - 6th of July, 2022.
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)

    Student presentation based effective teaching (SPET) approach was designed to engage students with different mindsets and academic preparation levels meaningfully and meet several ABET student learning outcomes. SPET method requires that students prepare themselves by guided self-study before coming to the class and make presentations to teach the whole class by (a) presenting complex concepts and systems appealingly and engagingly, and most importantly (b) serving as the discussion platform for the instructor to emphasize on complex concepts from multiple angles during different presentations. In class, SPET presentations address the conceptual questions that are assigned 1–2 weeks before the presentation day. However, the SPET approach becomes impractical for large class sizes because (i) during one class period all the students can not present, (ii) many students do not make their sincere efforts. This paper focuses on the second modification of SPET to make it practical for large classes. The method reported in this paper was tested on MECH 462 Design of Energy System Course. Unlike the first modified approach, all the students were expected to submit the response to the preassigned questions before coming to the class. In class, SPET group presentations were prepared by the group of 3–6 students, who prepared themselves by doing SPET conceptual questions individually. Students communicated with each other to make a cohesive presentation for ∼30 min. In two classes per week, we covered 5–6 group presentations to do enough discussions and repetition of the core concepts for a more in-depth understanding of the content. During the presentation, each student was evaluated for (a) their depth of understanding, (b) understanding other parts of the presentation covered by other teammates, and (c) quality of presentation and content. The student who appeared unprepared in the class group presentation were provided direct feedback and resources to address concerning areas. SPET approach was applied in the online mode during the campus shut down due to COVID-19. SPET was immensely effective and helped to complete the course learning outcomes without interruptions. SPET could be customized for the online version without any additional preparation on the instructor part.

    more » « less
  2. In the 21st Century, it becomes of utmost importance for the educator and learner to be mindful of the evolution and application of factors that govern the mental state. Many studies revealed that the success of a professional is strongly dependent on their emotion management skills to manage themselves and associated responsibilities in a demanding environment. Emotionally intelligent professionals are also able to handle challenging situations involving other people. These days many industries, research establishments, and universities that hire graduate students conduct specialized training to enhance their soft skills, mainly interpersonal skills, to make their employees perform at their highest potential. One can maximize the gain from soft skills if they are well aware of the state of human psychology developed in the form of emotional intelligence and positive intelligence. In the last two decades, the concept of emotional intelligence was created by professional personality coaching groups. These trainings are heavily attended by professionals engaged in marketing and organization leaders to enhance their capability in the workplace. However, emotional intelligence is mainly about being aware of the mental state and maintaining control of one's actions during various mental states, such as anger, happiness, sadness, remorse, etc. Aspiring graduate students in science and technology generally lack formal training in understanding human behavior and traits that can adversely impact their ability to perform and innovate at the highest level. This paper focuses on training graduate students about the popular and practical transactional analysis science and assessing their competence in utilizing this knowledge to decipher their own and other people's behavior. Transactional analysis was taught to students via Student presentation-based effective teaching (SPET) methodology. Under this approach, graduate students enrolled in the MECH 500 Class were provided a set of questions to answer by self-reading of the recommended textbook "I am OK You are OK by Thomas Harris." Each student individually answered the assignment questions and then worked in the group to prepare a group presentation for the in-class discussion. Three group discussions were conducted to present different views about the four types of transactions and underlying human traits. Before transactional analysis training, students were also trained in Positive intelligence psychology tools for a similar objective. After the discussion, students were surveyed about the depth of their understanding. Students also reflected their views on the utility of transactional analysis with respect to positive intelligence. More than 75% of students mention that they gain high competency in understanding, defining, and utilizing transactional analysis. This study presents insights for positively impacting graduate students' mindsets as they pursue an unpredicted course of research that can sometimes become very challenging. 
    more » « less
  3. Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in a flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other. 
    more » « less
  4. null (Ed.)
    Purpose: We gathered examples from our extended collaboration to move educators move online while avoiding synchronous meetings. “gPortfolios” are public (to the class) pages where students write responses to carefully constructed engagement routines. Students then discuss their work with instructors and peers in threaded comments. gPortfolios usually include engagement reflections, formative self-assessments, and automated quizzes. These assessments support and document learning while avoiding instructor “burnout” from grading. gPortfolios can be implemented using Google Docs and Forms or any learning management system. Methodology. We report practical insights gained from design-based implementation research. This research explored the late Randi Engle’s principles for productive disciplinary engagement and expansive framing. Engle used current theories of learning to foster student discussions that were both authentic to the academic discipline at hand and productive for learning. This research also used new approaches to assessment to support Engle’s principles. This resulted in a comprehensive approach to online instruction and assessment that is effective and efficient for both students and teachers. Findings. Our approach “frames” (i.e., contextualizes) online engagement using each learners’ own experiences, perspectives, and goals. Writing this revealed how this was different in different courses. Secondary biology students framed each assignment independently. Secondary English and history students framed assignments as elements of a personalized capstone presentation; the history students further used a self-selected “historical theme.” Graduate students framed each assignment in an educational assessment course using a real or imagined curricular aim and context. Originality. Engle’s ideas have yet to be widely taken up in online education. 
    more » « less
  5. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less