skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PREPARATORY DISCUSSION AND PROJECT AUGMENTED STUDENT LEARNING VIA STUDENT PRESENTATION BASED EFFECTIVE TEACHING (SPET) APPROACH
Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who were overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments.  more » « less
Award ID(s):
1914751
PAR ID:
10333052
Author(s) / Creator(s):
Date Published:
Journal Name:
EDUlearn 2022, 14th annual International Conference on Education and New Learning Technologies Palma de Mallorca (Spain). 4th - 6th of July, 2022.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Student presentation based effective teaching (SPET) approach was designed to engage students with different mindsets and academic preparation levels meaningfully and meet several ABET student learning outcomes. SPET method requires that students prepare themselves by guided self-study before coming to the class and make presentations to teach the whole class by (a) presenting complex concepts and systems appealingly and engagingly, and most importantly (b) serving as the discussion platform for the instructor to emphasize on complex concepts from multiple angles during different presentations. In class, SPET presentations address the conceptual questions that are assigned 1–2 weeks before the presentation day. However, the SPET approach becomes impractical for large class sizes because (i) during one class period all the students can not present, (ii) many students do not make their sincere efforts. This paper focuses on the second modification of SPET to make it practical for large classes. The method reported in this paper was tested on MECH 462 Design of Energy System Course. Unlike the first modified approach, all the students were expected to submit the response to the preassigned questions before coming to the class. In class, SPET group presentations were prepared by the group of 3–6 students, who prepared themselves by doing SPET conceptual questions individually. Students communicated with each other to make a cohesive presentation for ∼30 min. In two classes per week, we covered 5–6 group presentations to do enough discussions and repetition of the core concepts for a more in-depth understanding of the content. During the presentation, each student was evaluated for (a) their depth of understanding, (b) understanding other parts of the presentation covered by other teammates, and (c) quality of presentation and content. The student who appeared unprepared in the class group presentation were provided direct feedback and resources to address concerning areas. SPET approach was applied in the online mode during the campus shut down due to COVID-19. SPET was immensely effective and helped to complete the course learning outcomes without interruptions. SPET could be customized for the online version without any additional preparation on the instructor part. 
    more » « less
  2. Grawe, Nathan D (Ed.)
    Many educators and professional organizations recommend Quantitative Reasoning as the best entry-level postsecondary mathematics course for non-STEM majors. However, novice and veteran instructors who have no prior experience in teaching a QR course often express their ignorance of the content to choose for this course, the instruction to offer students, and the assessments to measure student learning. We conducted a case study to investigate the initial implementation of an entry-level university quantitative reasoning course during fall semester, 2018. The participants were the course instructor and students. We examined the instructor’s motives and actions and the students’ responses to the course. The instructor had no prior experience teaching a QR course but did have 15 years of experience teaching student-centered mathematics. Data included course artifacts, class observations, an instructor interview, and students’ written reflections. Because this was a new course—and to adapt to student needs—the instructor employed his instructional autonomy and remained flexible in designing and enacting the course content, instruction, and assessment. His instructional decision making and flexible approach helped the instructor tailor the learning activities and teaching practices to the needs and interests of the students. The students generally appreciated and benefited from this approach, enjoyed the course, and provided positive remarks about the instructors’ practices. 
    more » « less
  3. Ethics and social responsibility education within aerospace engineering remains limited, with education on the subject often disconnected from technical course content and led by guest lecturers. While still valuable, this approach inadvertently signals to students that such topics are an addendum to their work as engineers, and reinforces the misconception of engineering as an apolitical field. Furthermore, existing ethical discussions place focus on the microethical realm, examining the ethical implications of individual decisions within the profession. This microethical focus, while important, overlooks the wider impact of engineering technologies on society. Contrastingly, macroethics addresses the collective social responsibility of the engineering field, emphasizing the ethical concerns of engineering technology. However, the abstract and qualitative nature of these macroethical concepts often conflicts with the more quantitative content of technical engineering classes, complicating efforts to integrate them into engineering coursework. This work-in-progress paper presents an example of how macroethical concepts can be embedded into traditional technical classes to foster student awareness of their ethical responsibilities as future engineers. An in-class macroethics activity and follow-up assignment were implemented in an aerospace engineering capstone design course at the University of Michigan. In the in-class activity, the technical concept of spaceports, or facilities designed for spacecraft launch, and the macroethical concepts of rightsholder analysis were specifically selected to complement the course topic of spacecraft systems design. As such, the course structure was designed to present macroethical considerations as equivalent to other systems design requirements. The in-class activity encompassed a full course period and was both developed and presented by the course instructor, with the follow-up assignment appearing in the final student group reports. The aim of the in-class activity was to increase student awareness of macroethical effects, asking the broader question of who/what is impacted when an engineering decision is made. To this end, activities of rightsholder identification and power-impact mapping were implemented, along with small-group and full-class dialogue. Students were asked to select a location for a spaceport within their university’s host state, consider the impact of their choice by identifying the rightsholders affected, and compare and contrast the differences in power and impact of these affected parties. Following the lesson, students repeated this process as part of their final course project, considering the social impacts as part of their space system design process. The instructor's experience of developing and implementing the in-class macroethics lesson and activities is examined within this paper, with focus placed on the decisions made within course structuring and lesson planning to present macroethical content as equivalent in importance to technical content. Discussion of learning goals and pedagogy will be shared with aims to identify key aspects of the macroethics lesson that may be implemented in other courses. Future work by the authors will seek to further develop this core set of facilitation goals, and integrate student data into evaluating effectiveness of the lesson in developing students’ macroethical awareness. 
    more » « less
  4. null (Ed.)
    This article describes findings from the Survey of Student Perceptions of Remote Teaching and Learning, which was administered to a random national sample of 1,008 U.S. undergraduates taking for-credit college courses that began with in-person classes and shifted to remote instruction in spring 2020. Course satisfaction levels were much lower after courses moved online, and students recounted an array of barriers to their continued learning. More than 1 in 6 students experienced frequent internet connectivity issues and/or hardware and software problems severe enough to interfere with their ability to continue learning in their courses. Students from all backgrounds struggled to stay motivated and missed getting immediate instructor feedback and collaborating with their fellow students. Students of color and students from lower-income households experienced more challenges than did non-Hispanic White students and students from higher-income households. However, even with the challenges of an unplanned shift to remote learning, a majority of students were at least somewhat satisfied with their learning in the course after COVID, and satisfaction was higher for those courses using more of the practices recommended for effective online instruction. 
    more » « less
  5. This Research Full Paper presents our findings of studying the effects of teaching modality on collaborative learning by comparing data from two sections of a Database Systems course offered simultaneously, with one offered fully face-to-face in a classroom setting while the other is offered online through a flipped-classroom model. Both sections utilized a collaborative learning approach where students work on group activities for part of the class meeting. Since the two sections were almost identical except for the teaching modality, we are provided with a unique opportunity to study the effect of teaching modalities on collaborative learning. As part of this study, we analyze four crucial data sources: 1) student performance data from the grade book 2) student performance data from the online learning management platform 3) an end-of-semester survey given by the instructor and 4) an end-of-semester survey given by the university. We extract insights on the impact of teaching modalities on collaborative learning in order to identify factors that can enhance collaborative learning. We also study the effect of teaching modalities on students’ performance. We visualize our findings to differentiate between the two modalities, and draw on the strengths of each section to establish recommendations for the instructors for course improvement efforts. 
    more » « less