skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi Material 3D Scaffold Printing with Maskless Photolithography
ABSTRACT In today’s technology, organ transplantation is found very challenging as it is not easy to find the right donor organ in a short period of time. In the last several decades, tissue engineering was rapidly developed to be used as an alternative approach to the organ transplantation. Tissue engineering aims to regenerate the tissues and also organs to help patients who waits for the organ transplantation. Recent research showed that in order to regenerate the tissues, cells must be seeded onto the 3D artificial laboratory fabricated matrices called scaffolds. If cells show healthy growth within the scaffolds, they can be implanted to the injured tissue to do the regeneration. One of the biggest limitation that reduces the success rate of tissue regeneration is the fabrication of accurate thick 3D scaffolds. In this research “maskless photolithography” was used to fabricate the scaffolds. Experiment setup consist of digital micro-mirror devices (DMD) (Texas Instruments, DLi4120), optical lens sets, UV light source (DYMAX, BlueWave 200) and PEGDA which is a liquid form photo-curable solution. In this method, scaffolds are fabricated in layer-by-layer fashion to control the interior architecture of the scaffolds. Working principles of the maskless photolithography is, first layer shape is designed with AutoCAD and the designed image is uploaded to the DMD as a bitmap file. DMD consists of hundreds of tiny micro-mirrors. When the UV light is turned on and irradiated the DMD, depending on the micro-mirrors’ angles, UV light is selectively reflected to the low percentage Polyethylene (glycol) Diacrylate (PEGDA) photo-curable solution. When UV light penetrates into the PEGDA, only the illuminated part is solidified and non-illuminated area still remains in the liquid phase. In this research, scaffolds were fabricated in three layers. First layer and the last layer are solid layers and y-shape open structure was sandwiched between these layers. After the first layer is fabricated with DMD, a “y-shape” structure was fabricated with the 3D printer by using the dissolvable filament. Then, it was placed onto the first solid layer and covered with fresh high percentage PEGDA solution. UV light was reflected to the PEGDA solution and solidified to make the second and third layers. After the scaffold was fabricated, it is dipped into the limonene solution to dissolve the y-shape away. Our results show that thick scaffolds can be fabricated in layer-by-layer fashion with “maskless photolithography”. Since the UV light is stable and does not move onto the PEGDA, entire scaffold can be fabricated in one single UV shot which makes the process faster than the current fabrication techniques.  more » « less
Award ID(s):
1638492
PAR ID:
10023285
Author(s) / Creator(s):
;
Date Published:
Journal Name:
MRS Advances
ISSN:
2059-8521
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Organ architecture is often composed of multiple laminar tissues arranged in concentric layers. During morphogenesis, the initial geometry of visceral organs undergoes a sequence of folding, adopting a complex shape that is vital for function. Genetic signals are known to impact form, yet the dynamic and mechanical interplay of tissue layers giving rise to organs' complex shapes remains elusive. Here, we trace the dynamics and mechanical interactions of a developing visceral organ across tissue layers, from subcellular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live visualization with a novel computational framework for multilayer analysis of evolving complex shapes, we find a dynamic mechanism for organ folding using the embryonic midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ shape, control the emergence of high-frequency calcium pulses. Spatiotemporally patterned calcium pulses trigger muscle contractions via myosin light chain kinase. Muscle contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape change collectively drives a convergent extension pattern. Through tissue incompressibility and initial organ geometry, this in-plane shape change is linked to out-of-plane organ folding. Our analysis follows tissue dynamics during organ shape change in vivo, tracing organ-scale folding to a high-frequency molecular mechanism. These findings offer a mechanical route for gene expression to induce organ shape change: genetic patterning in one layer triggers a physical process in the adjacent layer – revealing post-translational mechanisms that govern shape change. 
    more » « less
  2. Abstract Motivated by the unexplored potential of in vitro neural systems for computing and by the corresponding need of versatile, scalable interfaces for multimodal interaction, an accurate, modular, fully customizable, and portable recording/stimulation solution that can be easily fabricated, robustly operated, and broadly disseminated is presented. This approach entails a reconfigurable platform that works across multiple industry standards and that enables a complete signal chain, from neural substrates sampled through micro‐electrode arrays (MEAs) to data acquisition, downstream analysis, and cloud storage. Built‐in modularity supports the seamless integration of electrical/optical stimulation and fluidic interfaces. Custom MEA fabrication leverages maskless photolithography, favoring the rapid prototyping of a variety of configurations, spatial topologies, and constitutive materials. Through a dedicated analysis and management software suite, the utility and robustness of this system are demonstrated across neural cultures and applications, including embryonic stem cell‐derived and primary neurons, organotypic brain slices, 3D engineered tissue mimics, concurrent calcium imaging, and long‐term recording. Overall, this technology, termed “mind in vitro” to underscore the computing inspiration, provides an end‐to‐end solution that can be widely deployed due to its affordable (>10× cost reduction) and open‐source nature, catering to the expanding needs of both conventional and unconventional electrophysiology. 
    more » « less
  3. ABSTRACT Vitrimers with self‐healing, recycling, and remolding capabilities are changing the paradigm for thermoset polymer design. In the past several years, vitrimers that exhibit shape memory effects and are curable by ultraviolet (UV) light have made significant progress in the realm of 4D printing. Herein, we report a molecular dynamics (MD) modeling framework to model UV curable shape memory vitrimers. We used our framework and compared our modeling results with one UV curable shape memory vitrimer found in the literature, bisphenol A glycerolate dimethacrylate. The comparison showed reasonable agreement between the modeling and experimental results in terms of thermomechanical and shape memory properties, along with self‐healing efficiency. It was found that during recycling, it was important for the network to percolate through a majority of the system to get reasonably high recovery stress and recycling efficiency. Once this was achieved, a topological descriptor that was found to represent the compactness of the network was identified as having a very high correlation with recovery stress and recycling efficiency for networks that percolated 70% or more of the monomers in a system. 
    more » « less
  4. Abstract Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well‐known insulin‐mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage‐specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone‐specific genes. This study demonstrates the feasibility of ZnO‐containing composites as a potential scaffold for osteochondral tissue engineering. 
    more » « less
  5. Microsphere photolithography (MPL) is an alternative low-cost technique for the large-scale fabrication of periodic structures, such as metasurfaces. This technique utilizes the photonic nanojet generated in the photoresist (PR), by microspheres in near proximity, which are exposed to collimated ultraviolet (UV) flood illumination. In the basic approach, a microsphere array is self-assembled on, or transferred to, the substrate prior to exposure. After exposure, the microspheres are washed away in the development step. The process to recover and clean these microspheres for reuse is complicated. This paper investigates the use of reusable microsphere masks created by fixing the microspheres on a UV transparent support. This is then brought into contact with the photoresist with controlled pressure. There is a trade-off between the quality of the fabricated samples and the wear of the mask determined by the contact pressure. The system is demonstrated using a digital micromirror device (DMD)-based direct-write exposure system to fabricate infrared (IR) metasurfaces. These metasurfaces are characterized and compared to simulation models. Finally, a series of 50 hierarchically patterned IR metasurfaces was fabricated using a single reusable mask. These samples had a <3% coefficient of variance when viewed with a thermal camera. This work shows the potential of mask-based MPL and other contact microlens array-based photolithography techniques for low-cost large-scale fabrication. 
    more » « less