skip to main content

Title: Multi Material 3D Scaffold Printing with Maskless Photolithography
ABSTRACT In today’s technology, organ transplantation is found very challenging as it is not easy to find the right donor organ in a short period of time. In the last several decades, tissue engineering was rapidly developed to be used as an alternative approach to the organ transplantation. Tissue engineering aims to regenerate the tissues and also organs to help patients who waits for the organ transplantation. Recent research showed that in order to regenerate the tissues, cells must be seeded onto the 3D artificial laboratory fabricated matrices called scaffolds. If cells show healthy growth within the scaffolds, they can be implanted to the injured tissue to do the regeneration. One of the biggest limitation that reduces the success rate of tissue regeneration is the fabrication of accurate thick 3D scaffolds. In this research “maskless photolithography” was used to fabricate the scaffolds. Experiment setup consist of digital micro-mirror devices (DMD) (Texas Instruments, DLi4120), optical lens sets, UV light source (DYMAX, BlueWave 200) and PEGDA which is a liquid form photo-curable solution. In this method, scaffolds are fabricated in layer-by-layer fashion to control the interior architecture of the scaffolds. Working principles of the maskless photolithography is, first layer shape is designed more » with AutoCAD and the designed image is uploaded to the DMD as a bitmap file. DMD consists of hundreds of tiny micro-mirrors. When the UV light is turned on and irradiated the DMD, depending on the micro-mirrors’ angles, UV light is selectively reflected to the low percentage Polyethylene (glycol) Diacrylate (PEGDA) photo-curable solution. When UV light penetrates into the PEGDA, only the illuminated part is solidified and non-illuminated area still remains in the liquid phase. In this research, scaffolds were fabricated in three layers. First layer and the last layer are solid layers and y-shape open structure was sandwiched between these layers. After the first layer is fabricated with DMD, a “y-shape” structure was fabricated with the 3D printer by using the dissolvable filament. Then, it was placed onto the first solid layer and covered with fresh high percentage PEGDA solution. UV light was reflected to the PEGDA solution and solidified to make the second and third layers. After the scaffold was fabricated, it is dipped into the limonene solution to dissolve the y-shape away. Our results show that thick scaffolds can be fabricated in layer-by-layer fashion with “maskless photolithography”. Since the UV light is stable and does not move onto the PEGDA, entire scaffold can be fabricated in one single UV shot which makes the process faster than the current fabrication techniques. « less
Authors:
;
Award ID(s):
1638492
Publication Date:
NSF-PAR ID:
10023285
Journal Name:
MRS Advances
Page Range or eLocation-ID:
1 to 6
ISSN:
2059-8521
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the first realization of quasi-phase-matched (QPM) third harmonic generation in isotropic polymer films. Spin-coated thin films of ethyl-violet molecules dispersed in a polymer host (EV) were used as cubic nonlinear optical media because of their transparency at both the fundamental (1230 nm) and the third harmonic (410 nm) wavelengths. A passive layer of a UV-curable material was formed to compensate the phase shift between the two light waves after propagating through each EV layer. We fabricated a series of samples with 1~4 EV layers (0~3 alternatingly coated passive layers). The third harmonic output power showed a quadratic increase with the number of layers, providing a strong evidence for successful quasi-phase-matching. A conversion efficiency of 0.15% was observed with a 190 fs pulse input.

  2. Organ architecture is often composed of multiple laminar tissues arranged in concentric layers. During morphogenesis, the initial geometry of visceral organs undergoes a sequence of folding, adopting a complex shape that is vital for function. Genetic signals are known to impact form, yet the dynamic and mechanical interplay of tissue layers giving rise to organs' complex shapes remains elusive. Here, we trace the dynamics and mechanical interactions of a developing visceral organ across tissue layers, from subcellular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live visualization with a novel computational framework for multilayer analysis of evolving complex shapes, we find a dynamic mechanism for organ folding using the embryonic midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ shape, control the emergence of high-frequency calcium pulses. Spatiotemporally patterned calcium pulses trigger muscle contractions via myosin light chain kinase. Muscle contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape change collectively drives a convergent extension pattern. Through tissue incompressibility and initial organ geometry, this in-plane shape change is linked to out-of-plane organ folding. Our analysis follows tissue dynamics during organ shape change in vivo,more »tracing organ-scale folding to a high-frequency molecular mechanism. These findings offer a mechanical route for gene expression to induce organ shape change: genetic patterning in one layer triggers a physical process in the adjacent layer – revealing post-translational mechanisms that govern shape change.« less
  3. In 2020, nearly 107,000 people in the U.S needed a lifesaving organ transplant, but due to a limited number of donors, only ∼35% of them have actually received it. Thus, successful bio-manufacturing of artificial tissues and organs is central to satisfying the ever-growing demand for transplants. However, despite decades of tremendous investments in regenerative medicine research and development conventional scaffold technologies have failed to yield viable tissues and organs. Luckily, microfluidic scaffolds hold the promise of overcoming the major challenges associated with generating complex 3D cultures: 1) cell death due to poor metabolite distribution/clearing of waste in thick cultures; 2) sacrificial analysis due to inability to sample the culture non-invasively; 3) product variability due to lack of control over the cell action post-seeding, and 4) adoption barriers associated with having to learn a different culturing protocol for each new product. Namely, their active pore networks provide the ability to perform automated fluid and cell manipulations (e.g., seeding, feeding, probing, clearing waste, delivering drugs, etc.) at targeted locations in-situ . However, challenges remain in developing a biomaterial that would have the appropriate characteristics for such scaffolds. Specifically, it should ideally be: 1) biocompatible —to support cell attachment and growth, 2) biodegradablemore »—to give way to newly formed tissue, 3) flexible —to create microfluidic valves, 4) photo-crosslinkable —to manufacture using light-based 3D printing and 5) transparent —for optical microscopy validation. To that end, this minireview summarizes the latest progress of the biomaterial design, and of the corresponding fabrication method development, for making the microfluidic scaffolds.« less
  4. Micro-blade design is an important factor in the cutting of single cells and other biological structures. This paper describes the fabrication process of three-dimensional (3D) micro-blades for the cutting of single cells in a microfluidic “guillotine” intended for fundamental wound repair and regeneration studies. Our microfluidic guillotine consists of a fixed 3D micro-blade centered in a microchannel to bisect cells flowing through. We show that the Nanoscribe two-photon polymerization direct laser writing system is capable of fabricating complex 3D micro-blade geometries. However, structures made of the Nanoscribe IP-S resin have low adhesion to silicon, and they tend to peel off from the substrate after at most two times of replica molding in poly(dimethylsiloxane) (PDMS). Our work demonstrates that the use of a secondary mold replicates Nanoscribe-printed features faithfully for at least 10 iterations. Finally, we show that complex micro-blade features can generate different degrees of cell wounding and cell survival rates compared with simple blades possessing a vertical cutting edge fabricated with conventional 2.5D photolithography. Our work lays the foundation for future applications in single cell analyses, wound repair and regeneration studies, as well as investigations of the physics of cutting and the interaction between the micro-blade and biological structures.
  5. Abstract

    Engineering heterogeneous micro-mechano-microenvironments of extracellular matrix is of great interest in tissue engineering, but spatial control over mechanical heterogeneity in three dimensions is still challenging given the fact that geometry and stiffness are inherently intertwined in fabrication. Here, we develop a layer-by-layer three-dimensional (3D) printing paradigm which achieves orthogonal control of stiffness and geometry by capitalizing on the conventionally adverse effect of oxygen inhibition on free-radical polymerization. Controlled oxygen permeation and inhibition result in photo-cured hydrogel layers with thicknesses only weakly dependent to the ultraviolet exposure dosage. The dosage is instead leveraged to program the crosslink density and stiffness of the cured structures. The programmable stiffness spans nearly an order of magnitude (E ~ 2–15 kPa) within the physiologically relevant range. We further demonstrate that extracellular matrices with programmed micro-mechano-environments can dictate 3D cellular organization, enabling in vitro tissue reconstruction.