skip to main content


Title: Visceral organ morphogenesis via calcium-patterned muscle constrictions
Organ architecture is often composed of multiple laminar tissues arranged in concentric layers. During morphogenesis, the initial geometry of visceral organs undergoes a sequence of folding, adopting a complex shape that is vital for function. Genetic signals are known to impact form, yet the dynamic and mechanical interplay of tissue layers giving rise to organs' complex shapes remains elusive. Here, we trace the dynamics and mechanical interactions of a developing visceral organ across tissue layers, from subcellular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live visualization with a novel computational framework for multilayer analysis of evolving complex shapes, we find a dynamic mechanism for organ folding using the embryonic midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ shape, control the emergence of high-frequency calcium pulses. Spatiotemporally patterned calcium pulses trigger muscle contractions via myosin light chain kinase. Muscle contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape change collectively drives a convergent extension pattern. Through tissue incompressibility and initial organ geometry, this in-plane shape change is linked to out-of-plane organ folding. Our analysis follows tissue dynamics during organ shape change in vivo, tracing organ-scale folding to a high-frequency molecular mechanism. These findings offer a mechanical route for gene expression to induce organ shape change: genetic patterning in one layer triggers a physical process in the adjacent layer – revealing post-translational mechanisms that govern shape change.  more » « less
Award ID(s):
1707973
NSF-PAR ID:
10378307
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary  
    more » « less
  2. Engineers have long studied how mechanical instabilities cause patterns to form in inanimate materials, and recently more attention has been given to how such forces affect biological systems. For example, stresses can build up within a tissue if one layer grows faster than an adjacent layer. The tissue can release this stress by wrinkling, folding or creasing. Though ancient and single-celled, bacteria can also develop spectacular patterns when they exist in the lifestyle known as a biofilm: a community of cells adhered to a surface. But do mechanical instabilities drive the patterns seen in biofilms? To investigate, Yan, Fei, Mao et al. grew biofilms of the bacterium called Vibrio cholerae – which causes the disease cholera – on solid, non-growing ‘substrates’. This work revealed that as the biofilms grow, their expansion is constrained by the substrate, and this situation generates mechanical stresses. To release the stresses, the biofilm initially folds to form wrinkles. Later, as the biofilm expands further, small parts of it detach from the substrate to form blisters. The same forces that keep water droplets spherical (known as interfacial forces) dictate how the blisters evolve, interact, and eventually shape the expanding biofilm. Using these principles, Yan et al. could engineer the biofilm into desired shapes. Collectively, the results presented by Yan et al. connect the shape of the biofilm surface with its material properties, in particular its stiffness. Understanding this relationship could help researchers to develop new ways to remove harmful biofilms, such as those that cause disease or that damage underwater structures. The stiffness of biofilms is already known to affect how well bacteria can resist antibiotics. Future studies could look for new genes or compounds that change the material properties of a biofilm, thereby altering the biofilm surface. 
    more » « less
  3. Abstract

    The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin+ flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 106 hPSC-CMs were mixed with 0.4 × 106 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, β-adrenergic receptors, and t-tubule protein caveolin-3. Passive stretch affects the structural and functional maturation of EHMs. Based on our predictive computational modeling, we show how to optimize cell alignment and calcium dynamics within EHMs. These findings provide a basis for the rational design of EHMs, which enables future scale-up productions for clinical use in cardiovascular tissue engineering.

     
    more » « less
  4. Structural DNA nanotechnology has enabled the design and construction of complex nanoscale structures with precise geometry and programmable dynamic and mechanical properties. Recent efforts have led to major advances in the capacity to actuate shape changes of DNA origami devices and incorporate DNA origami into larger assemblies, which open the prospect of using DNA to design shape-morphing assemblies as components of micro-scale reconfigurable or sensing materials. Indeed, a few studies have constructed higher order assemblies with reconfigurable devices; however, these demonstrations have utilized structures with relatively simple motion, primarily hinges that open and close. To advance the shape changing capabilities of DNA origami assemblies, we developed a multi-component DNA origami 6-bar mechanism that can be reconfigured into various shapes and can be incorporated into larger assemblies while maintaining capabilities for a variety of shape transformations. We demonstrate the folding of the 6-bar mechanism into four different shapes and demonstrate multiple transitions between these shapes. We also studied the shape preferences of the 6-bar mechanism in competitive folding reactions to gain insight into the relative free energies of the shapes. Furthermore, we polymerized the 6-bar mechanism into tubes with various cross-sections, defined by the shape of the individual mechanism, and we demonstrate the ability to change the shape of the tube cross-section. This expansion of current single-device reconfiguration to higher order scales provides a foundation for nano to micron scale DNA nanotechnology applications such as biosensing or materials with tunable properties. 
    more » « less
  5. ABSTRACT In today’s technology, organ transplantation is found very challenging as it is not easy to find the right donor organ in a short period of time. In the last several decades, tissue engineering was rapidly developed to be used as an alternative approach to the organ transplantation. Tissue engineering aims to regenerate the tissues and also organs to help patients who waits for the organ transplantation. Recent research showed that in order to regenerate the tissues, cells must be seeded onto the 3D artificial laboratory fabricated matrices called scaffolds. If cells show healthy growth within the scaffolds, they can be implanted to the injured tissue to do the regeneration. One of the biggest limitation that reduces the success rate of tissue regeneration is the fabrication of accurate thick 3D scaffolds. In this research “maskless photolithography” was used to fabricate the scaffolds. Experiment setup consist of digital micro-mirror devices (DMD) (Texas Instruments, DLi4120), optical lens sets, UV light source (DYMAX, BlueWave 200) and PEGDA which is a liquid form photo-curable solution. In this method, scaffolds are fabricated in layer-by-layer fashion to control the interior architecture of the scaffolds. Working principles of the maskless photolithography is, first layer shape is designed with AutoCAD and the designed image is uploaded to the DMD as a bitmap file. DMD consists of hundreds of tiny micro-mirrors. When the UV light is turned on and irradiated the DMD, depending on the micro-mirrors’ angles, UV light is selectively reflected to the low percentage Polyethylene (glycol) Diacrylate (PEGDA) photo-curable solution. When UV light penetrates into the PEGDA, only the illuminated part is solidified and non-illuminated area still remains in the liquid phase. In this research, scaffolds were fabricated in three layers. First layer and the last layer are solid layers and y-shape open structure was sandwiched between these layers. After the first layer is fabricated with DMD, a “y-shape” structure was fabricated with the 3D printer by using the dissolvable filament. Then, it was placed onto the first solid layer and covered with fresh high percentage PEGDA solution. UV light was reflected to the PEGDA solution and solidified to make the second and third layers. After the scaffold was fabricated, it is dipped into the limonene solution to dissolve the y-shape away. Our results show that thick scaffolds can be fabricated in layer-by-layer fashion with “maskless photolithography”. Since the UV light is stable and does not move onto the PEGDA, entire scaffold can be fabricated in one single UV shot which makes the process faster than the current fabrication techniques. 
    more » « less