skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short day transcriptomic programming during induction of dormancy in grapevine
Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes fromthe NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING FINGER and NAC DOMAIN CONTAINING PROTEIN 19 transcription factors.  more » « less
Award ID(s):
0604755
PAR ID:
10023493
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in plant science
Volume:
6
Issue:
November
ISSN:
1664-462X
Page Range / eLocation ID:
834
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Transition of grapevine buds from paradormancy to endodormancy is coordinated by changes in gene expression, phytohormones, transcription factors, and other molecular regulators, but the mechanisms involved in transcriptional and post-transcriptional regulation of dormancy stages are not well delineated. To identify potential regulatory targets, an integrative analysis of differential gene expression profiles and their inverse relationships with miRNA abundance was performed in paradormant (long day (LD) 15 h) or endodormant (short day (SD), 13 h) Vitis riparia buds. There were 400 up- and 936 downregulated differentially expressed genes in SD relative to LD buds. Gene set and gene ontology enrichment analysis indicated that hormone signaling and cell cycling genes were downregulated in SD relative to LD buds. miRNA abundance and inverse expression analyses of miRNA target genes indicated increased abundance of miRNAs that negatively regulate genes involved with cell cycle and meristem development in endodormant buds and miRNAs targeting starch metabolism related genes in paradormant buds. Analysis of interactions between abundant miRNAs and transcription factors identified a network with coinciding regulation of cell cycle and epigenetic regulation related genes in SD buds. This network provides evidence for cross regulation occurring between miRNA and transcription factors both upstream and downstream of MYB3R1. 
    more » « less
  2. Abstract BackgroundBud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch’s Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch’s Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch’s Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets. ResultsThe Dakapo and Merlot cases of Witch’s Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch’s Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968–974 unique genetic mutations in our two Witch’s Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch’s Broom impacting the gene GSVIVG01008260001. ConclusionsThe Witch’s Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch’s Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine. 
    more » « less
  3. SUMMARY The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis viniferaL.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP‐Seq) allows for the genome‐wide TF‐binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP‐Seq of MYB14/MYB15 was combined with aggregate gene co‐expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47STSfamily genes. Moreover, all three MYBs bind to severalPAL,C4H, and4CLgenes, in addition to shikimate pathway genes, theWRKY03stilbenoid co‐regulator and resveratrol‐modifying gene candidates among which ROMT2‐3 were validated enzymatically. A high proportion of DAP‐Seq bound genes were induced in the activated transcriptomes of transientMYB15‐overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3‐MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP‐Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome‐wide approaches in the context of non‐model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism. 
    more » « less
  4. Summary In seasonally cold climates, many woody plants tolerate chilling and freezing temperatures by ceasing growth, shedding leaves and entering dormancy. At the same time, transport within these plants often decreases as the vascular system exhibits reduced functionality. As spring growth requires water and nutrients, we ask the question: how much does bud, leaf and flower development depend on the vasculature in spring? In this review, we present what is known about leaf, flower and vascular phenology to sort out this question. In early stages of bud development, buds rely on internal resources and do not appear to require vascular support. The situation changes during organ expansion, after leaves and flowers reconnect to the stem vascular system. However, there are major gaps in our understanding of the timing of vascular development, especially regarding the phloem, as well as the synchronization among leaves, flowers, stem and root vasculature. We believe these gaps are mainly the outcome of research completed in silo and urge future work to take a more integrative approach. We highlight current challenges and propose future directions to make rapid progress on this important topic in upcoming years. 
    more » « less
  5. Morphogen signaling contributes to the patterned spatiotemporal expression of genes during development. One mode of regulation of signaling-responsive genes is at the level of transcription. Single-cell quantitative studies of transcription have revealed that transcription occurs intermittently, in bursts. Although the effects of many gene regulatory mechanisms on transcriptional bursting have been studied, it remains unclear how morphogen gradients affect this dynamic property of downstream genes. Here we have adapted single molecule fluorescence in situ hybridization (smFISH) for use in the Drosophila wing imaginal disc in order to measure nascent and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We compared our experimental results with predictions from stochastic models of transcription, which indicated that the transcription levels of these genes appear to share a common method of control via burst frequency modulation. Our data helps further elucidate the link between developmental gene regulatory mechanisms and transcriptional bursting. 
    more » « less