skip to main content


Title: From buds to shoots: insights into grapevine development from the Witch’s Broom bud sport
Abstract Background

Bud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch’s Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch’s Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch’s Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets.

Results

The Dakapo and Merlot cases of Witch’s Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch’s Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968–974 unique genetic mutations in our two Witch’s Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch’s Broom impacting the gene GSVIVG01008260001.

Conclusions

The Witch’s Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch’s Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.

 
more » « less
Award ID(s):
2310355
NSF-PAR ID:
10500832
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Plant Biology
Volume:
24
Issue:
1
ISSN:
1471-2229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Societal Impact Statement

    Grapevine leaves are emblematic of the strong visual associations people make with plants. Leaf shape is immediately recognizable at a glance, and therefore, this is used to distinguish grape varieties. In an era of computationally enabled machine learning‐derived representations of reality, we can revisit how we view and use the shapes and forms that plants display to understand our relationship with them. Using computational approaches combined with time‐honored methods, we can predict theoretical leaves that are possible, enabling us to understand the genetics, development, and environmental responses of plants in new ways.

    Summary

    Grapevine leaves are a model morphometric system. Sampling over 10,000 leaves using dozens of landmarks, the genetic, developmental, and environmental basis of leaf shape has been studied and a morphospace for the genusVitispredicted. Yet, these representations of leaf shape fail to capture the exquisite features of leaves at high resolution.

    We measure the shapes of 139 grapevine leaves using 1672 pseudo‐landmarks derived from 90 homologous landmarks with Procrustean approaches. From hand traces of the vasculature and blade, we have derived a method to automatically detect landmarks and place pseudo‐landmarks that results in a high‐resolution representation of grapevine leaf shape. Using polynomial models, we create continuous representations of leaf development in 10Vitisspp.

    We visualize a high‐resolution morphospace in which genetic and developmental sources of leaf shape variance are orthogonal to each other. Using classifiers,Vitis vinifera,Vitisspp., rootstock and dissected leaf varieties as well as developmental stages are accurately predicted. Theoretical eigenleaf representations sampled from across the morphospace that we call synthetic leaves can be classified using models.

    By predicting a high‐resolution morphospace and delimiting the boundaries of leaf shapes that can plausibly be produced within the genusVitis, we can sample synthetic leaves with realistic qualities. From an ampelographic perspective, larger numbers of leaves sampled at lower resolution can be projected onto this high‐resolution space, or, synthetic leaves can be used to increase the robustness and accuracy of machine learning classifiers.

     
    more » « less
  2. Abstract Background

    Global developmental delay or intellectual disability usually accompanies various genetic disorders as a part of the syndrome, which may include seizures, autism spectrum disorder and multiple congenital abnormalities. Next-generation sequencing (NGS) techniques have improved the identification of pathogenic variants and genes related to developmental delay. This study aimed to evaluate the yield of whole exome sequencing (WES) and neurodevelopmental disorder gene panel sequencing in a pediatric cohort from Ukraine. Additionally, the study computationally predicted the effect of variants of uncertain significance (VUS) based on recently published genetic data from the country’s healthy population.

    Methods

    The study retrospectively analyzed WES or gene panel sequencing findings of 417 children with global developmental delay, intellectual disability, and/or other symptoms. Variants of uncertain significance were annotated using CADD-Phred and SIFT prediction scores, and their frequency in the healthy population of Ukraine was estimated.

    Results

    A definitive molecular diagnosis was established in 66 (15.8%) of the individuals. WES diagnosed 22 out of 37 cases (59.4%), while the neurodevelopmental gene panel identified 44 definitive diagnoses among the 380 tested patients (12.1%). Non-diagnostic findings (VUS and carrier) were reported in 350 (83.2%) individuals. The most frequently diagnosed conditions were developmental and epileptic encephalopathies associated with severe epilepsy and GDD/ID (associated genesARX, CDKL5, STXBP1, KCNQ2, SCN2A, KCNT1, KCNA2). Additionally, we annotated 221 VUS classified as potentially damaging, AD or X-linked, potentially increasing the diagnostic yield by 30%, but 18 of these variants were present in the healthy population of Ukraine.

    Conclusions

    This is the first comprehensive study on genetic causes of GDD/ID conducted in Ukraine. This study provides the first comprehensive investigation of the genetic causes of GDD/ID in Ukraine. It presents a substantial dataset of diagnosed genetic conditions associated with GDD/ID. The results support the utilization of NGS gene panels and WES as first-line diagnostic tools for GDD/ID cases, particularly in resource-limited settings. A comprehensive approach to resolving VUS, including computational effect prediction, population frequency analysis, and phenotype assessment, can aid in further reclassification of deleterious VUS and guide further testing in families.

     
    more » « less
  3. Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes fromthe NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING FINGER and NAC DOMAIN CONTAINING PROTEIN 19 transcription factors. 
    more » « less
  4. Abstract Background

    Doublecortin‐like kinase1 and 2 (DCLKs) are protein Ser/Thr kinases important for neuronal development. More recently, they are also reported to regulate plasticity such as cell proliferation and differentiation of stem cells and cancer cells, but the details of their functions in this biological context are still unclear. With an attempt to reveal the functions of DCLKs in plasticity regulation, we here used the sea urchin embryo that undergoes highly regulative development as an experimental model.

    Results

    We found that both the transcripts and the proteins of DCLKs are uniformly present during early embryogenesis and with some enrichment in mesenchymal cells after gastrula stage. Knockdown of DCLKs induced general developmental delay and defects at day 2. Further, the damage on the embryo/larva induced ectopic expression of DCLKs in the ectoderm where the damage was most severe. Under a tumor‐prone or ‐suppressive condition, DCLKs expression was upregulated or downregulated, respectively, after damage. In both cases, the embryos showed severe developmental defects.

    Conclusions

    Taken together, a transient upregulation of DCLKs appears to be involved in a damage response both during normal and abnormal development, and which could result in different phenotypes in a context dependent manner.

     
    more » « less
  5. Abstract Background

    Up to one of every six individuals diagnosed with one cancer will be diagnosed with a second primary cancer in their lifetime. Genetic factors contributing to the development of multiple primary cancers, beyond known cancer syndromes, have been underexplored.

    Methods

    To characterize genetic susceptibility to multiple cancers, we conducted a pan-cancer, whole-exome sequencing study of individuals drawn from two large multi-ancestry populations (6429 cases, 165,853 controls). We created two groupings of individuals diagnosed with multiple primary cancers: (1) an overall combined set with at least two cancers across any of 36 organ sites and (2) cancer-specific sets defined by an index cancer at one of 16 organ sites with at least 50 cases from each study population. We then investigated whether variants identified from exome sequencing were associated with these sets of multiple cancer cases in comparison to individuals with one and, separately, no cancers.

    Results

    We identified 22 variant-phenotype associations, 10 of which have not been previously discovered and were significantly overrepresented among individuals with multiple cancers, compared to those with a single cancer.

    Conclusions

    Overall, we describe variants and genes that may play a fundamental role in the development of multiple primary cancers and improve our understanding of shared mechanisms underlying carcinogenesis.

     
    more » « less