skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral separability analysis of five soybean cultivars with different ozone tolerance using hyperspectral field spectroscopy
In this contribution, we examine the potential of using field spectroscopy to discriminate the responses of five soybean cultivars to background ozone concentration. Statistical analysis of hyperspectral data including one-way analysis of variance (ANOVA) and spectral instability analysis (ISI) were used to identify the most effective wavelengths in mapping and differentiating the five cultivars with different tolerance to ozone damage. Our results show several distinctive spectral regions that can be used for effective crop type mapping within species level, and quantifying the effects of ozone damage at leaf and canopy scales. This work demonstrates that hyperspectral remote sensors soon become available from government and private sector satellites offer a new set of high-resolution spectral data that will help to quantify impacts background ozone concentrations due to climate change on food security.  more » « less
Award ID(s):
1355406
PAR ID:
10023525
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International
Page Range / eLocation ID:
6312 to 6315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest. 
    more » « less
  2. A framework combining two powerful tools of hyperspectral imaging and deep learning for the processing and classification of hyperspectral images (HSI) of rice seeds is presented. A seed-based approach that trains a three-dimensional convolutional neural network (3D-CNN) using the full seed spectral hypercube for classifying the seed images from high day and high night temperatures, both including a control group, is developed. A pixel-based seed classification approach is implemented using a deep neural network (DNN). The seed and pixel-based deep learning architectures are validated and tested using hyperspectral images from five different rice seed treatments with six different high temperature exposure durations during day, night, and both day and night. A stand-alone application with Graphical User Interfaces (GUI) for calibrating, preprocessing, and classification of hyperspectral rice seed images is presented. The software application can be used for training two deep learning architectures for the classification of any type of hyperspectral seed images. The average overall classification accuracy of 91.33% and 89.50% is obtained for seed-based classification using 3D-CNN for five different treatments at each exposure duration and six different high temperature exposure durations for each treatment, respectively. The DNN gives an average accuracy of 94.83% and 91% for five different treatments at each exposure duration and six different high temperature exposure durations for each treatment, respectively. The accuracies obtained are higher than those presented in the literature for hyperspectral rice seed image classification. The HSI analysis presented here is on the Kitaake cultivar, which can be extended to study the temperature tolerance of other rice cultivars. 
    more » « less
  3. Assessing soil organic carbon (SOC) stocks is crucial for understanding the carbon sequestration potential of agroecosystems and for mitigating climate change. This study presents a novel method for assessing SOC and mineral content at various soil depths in sorghum crops using hyperspectral remote sensing. Conducted at Planthaven Farms, MO, the research encompassed ten genotypes across 30 plots, yielding 180 soil samples from six depth intervals (0–150 cm) of bare soil. Chemical analyses determined the SOC and mineral levels, which were then compared to spectral data from HySpex indoor sensors. We utilized time-frequency analysis methods, including discrete wavelet transformation (DWT), continuous wavelet transformation (CWT), and frame transformation along with traditional spectral transformations, specifically fractional derivatives and continuum removal. The analysis revealed the shortwave infrared (SWIR) region, particularly the 1800–2000 nm range, as having the strongest correlations with SOC content (with R2 exceeding 0.8). The visible near-infrared (VNIR) region also provided valuable insights. Models incorporating CWT achieved high accuracy (test R2 exceeding 0.9), while frame transformation achieved strong accuracy (test R2 between 0.7 and 0.8) with fewer features. The random forest regressor (RFR) proved to be most robust, demonstrating superior accuracy and reduced overfitting compared to support vector regression (SVR), partial least squares regression (PLSR), and deep neural network (DNN) models. The models demonstrated the efficacy of hyperspectral data for SOC estimation, suggesting potential for future applications that integrate this data with above-ground biomass to improve SOC mapping across larger scales. This research offers a promising spectral transformation approach for effective carbon management and sustainable agriculture in a changing climate. 
    more » « less
  4. Abstract To understand surface biogeophysical processes, accurately evaluating the geographical and temporal fluctuations of soil moisture is crucial. It is well known that the surface soil moisture content (SMC) affects soil reflectance at all solar spectrum wavelengths. Therefore, future satellite missions, such as the NASA Surface Biology and Geology mission, will be essential for mapping and monitoring global soil moisture changes. Our study compares two widely used moisture retrieval models: the multilayer radiative transfer model of soil reflectance (MARMIT) and the soil water parametric (SWAP)‐Hapke model. We evaluated the SMC retrieval accuracy of these models using unmanned aerial systems (UAS) hyperspectral imagery and goniometer hyperspectral data. Laboratory analysis employed hyperspectral goniometer data of sediment samples from four locations reflecting diverse environments, while field validation used hyperspectral UAS imaging and coordinated ground truth collected in 2018 and 2019 from a barrier island beach at the Virginia Coast Reserve Long‐Term Ecological Research site. The (SWAP)‐Hapke model achieves comparable accuracy to MARMIT using laboratory hyperspectral data but is less accurate when applied to UAS hyperspectral imagery than the MARMIT model. We proposed a modified version of the (SWAP)‐Hapke model, which achieves better results than MARMIT when applied to laboratory spectral measurements; however, MARMIT's performance is still more accurate when applied to UAS imagery. These results are likely due to differences in the models' descriptions of multiply‐scattered light and MARMIT's more detailed description of air‐water interactions. 
    more » « less
  5. Hyperspectral imaging systems are becoming widely used due to their increasing accessibility and their ability to provide detailed spectral responses based on hundreds of spectral bands. However, the resulting hyperspectral images (HSIs) come at the cost of increased storage requirements, increased computational time to process, and highly redundant data. Thus, dimensionality reduction techniques are necessary to decrease the number of spectral bands while retaining the most useful information. Our contribution is two-fold: First, we propose a filter-based method called interband redundancy analysis (IBRA) based on a collinearity analysis between a band and its neighbors. This analysis helps to remove redundant bands and dramatically reduces the search space. Second, we apply a wrapper-based approach called greedy spectral selection (GSS) to the results of IBRA to select bands based on their information entropy values and train a compact convolutional neural network to evaluate the performance of the current selection. We also propose a feature extraction framework that consists of two main steps: first, it reduces the total number of bands using IBRA; then, it can use any feature extraction method to obtain the desired number of feature channels. We present classification results obtained from our methods and compare them to other dimensionality reduction methods on three hyperspectral image datasets. Additionally, we used the original hyperspectral data cube to simulate the process of using actual filters in a multispectral imager. 
    more » « less