skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soil Carbon Estimation From Hyperspectral Imagery With Wavelet Decomposition and Frame Theory
Assessing soil organic carbon (SOC) stocks is crucial for understanding the carbon sequestration potential of agroecosystems and for mitigating climate change. This study presents a novel method for assessing SOC and mineral content at various soil depths in sorghum crops using hyperspectral remote sensing. Conducted at Planthaven Farms, MO, the research encompassed ten genotypes across 30 plots, yielding 180 soil samples from six depth intervals (0–150 cm) of bare soil. Chemical analyses determined the SOC and mineral levels, which were then compared to spectral data from HySpex indoor sensors. We utilized time-frequency analysis methods, including discrete wavelet transformation (DWT), continuous wavelet transformation (CWT), and frame transformation along with traditional spectral transformations, specifically fractional derivatives and continuum removal. The analysis revealed the shortwave infrared (SWIR) region, particularly the 1800–2000 nm range, as having the strongest correlations with SOC content (with R2 exceeding 0.8). The visible near-infrared (VNIR) region also provided valuable insights. Models incorporating CWT achieved high accuracy (test R2 exceeding 0.9), while frame transformation achieved strong accuracy (test R2 between 0.7 and 0.8) with fewer features. The random forest regressor (RFR) proved to be most robust, demonstrating superior accuracy and reduced overfitting compared to support vector regression (SVR), partial least squares regression (PLSR), and deep neural network (DNN) models. The models demonstrated the efficacy of hyperspectral data for SOC estimation, suggesting potential for future applications that integrate this data with above-ground biomass to improve SOC mapping across larger scales. This research offers a promising spectral transformation approach for effective carbon management and sustainable agriculture in a changing climate.  more » « less
Award ID(s):
2154931
PAR ID:
10595741
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE Transactions on Geoscience and Remote Sensing
Date Published:
Journal Name:
IEEE Transactions on Geoscience and Remote Sensing
Volume:
62
ISSN:
0196-2892
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The extent, timing, and magnitude of soil moisture in wetlands (the hydropattern) is a primary physical control on biogeochemical processes in desert environments. However, determining playa hydropatterns is challenged by the remoteness of desert basin sites and by the difficulty in determining soil moisture from remotely sensed data at fine spatial and temporal scales (hundreds of meters to kilometers, and hours to days). Therefore, we developed a new, reflectance-based soil moisture index (continuum-removed water index, or CRWI) that can be determined via hyperspectral imaging from drone-borne platforms. We compared its efficacy at remotely determining soil moisture content to existing hyperspectral and multispectral soil moisture indices. CRWI varies linearly with in situ soil moisture content (R2 = 0.89, p < 0.001) and is comparatively insensitive to soil clay content (R2 = 0.4, p = 0.01), soil salinity (R2 = 0.82, p < 0.001), and soil grain size distribution (R2 = 0.67, p < 0.001). CRWI is negatively correlated with clay content, indicating it is not sensitive to hydrated mineral absorption features. CRWI has stronger correlation with surface soil moisture than other hyperspectral and multispectral indices (R2 = 0.69, p < 0.001 for WISOIL at this site). Drone-borne reflectance measurements allow monitoring of soil moisture conditions at the Alvord Desert playa test site over hectare-scale soil plots at measurement cadences of minutes to hours. CRWI measurements can be used to determine surface soil moisture at a range of desert sites to inform management decisions and to better reveal ecosystem processes in water-limited environments. 
    more » « less
  2. Soil organic carbon (SOC) represents the largest terrestrial carbon pool. Effectively monitoring SOC at high spatial resolution is crucial for estimating carbon budgets at the ecosystem scale and informing climate change mitigation efforts at the regional scale. Traditional soil sampling methods, however, are laborious and expensive. Remote sensing platforms can be used to survey large landscapes to meet the need for rapid and cost-effective approaches for quantifying SOC at landscape to regional scales, if relationships between remotely sensed variables and SOC can be established. We developed a workflow to analyze and predict SOC content based on National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) remote sensing data. First, we benchmarked related tools and developed reproducible workflows using NEON remote sensing datasets. Hyperspectral data were extracted from the locations where NEON soil data exist. Additional variables from the LiDAR data and key metadata (climate and land cover) were extracted for those locations. Random Forest and Partial Least Squares Regression techniques were then used to create models for fine-scale SOC prediction. Cross-validation was embedded in the model creation step. The most important covariates were selected through recursive feature elimination, stepwise selection, and expert judgment. Preliminary results indicate that machine learning models can re-produce SOC measurements in testing datasets. Key predictors include topographic variables, vegetation indices, and specific wavelength bands in hyperspectral images. We are further validating our algorithms using SOC data from ISCN (International Soil Carbon Network) and SoDaH (SOils DAta Harmonization database) that are co-located with NEON sites. We are creating high-resolution SOC maps for 0-30 cm depth at NEON sites and testing our algorithms for different land use types. Our work paves the way for a broader assessment of SOC stocks using remote sensing observations, and our high-resolution SOC maps will potentially help quantify carbon budgets across heterogeneous landscapes. 
    more » « less
  3. Abstract Understanding soil organic carbon (SOC) response to global change has been hindered by an inability to map SOC at horizon scales relevant to coupled hydrologic and biogeochemical processes. Standard SOC measurements rely on homogenized samples taken from distinct depth intervals. Such sampling prevents an examination of fine‐scale SOC distribution within a soil horizon. Visible near‐infrared hyperspectral imaging (HSI) has been applied to intact monoliths and split cores surfaces to overcome this limitation. However, the roughness of these surfaces can influence HSI spectra by scattering reflected light in different directions posing challenges to fine‐scale SOC mapping. Here, we examine the influence of prescribed surface orientation on reflected spectra, develop a method for correcting topographic effects, and calibrate a partial least squares regression (PLSR) model for SOC prediction. Two empirical models that account for surface slope, aspect, and wavelength and two theoretical models that account for the geometry of the spectrometer were compared using 681 homogenized soil samples from across the United States that were packed into sample wells and presented to the spectrometer at 91 orientations. The empirical approach outperformed the more complex geometric models in correcting spectra taken at non‐flat configurations. Topographically corrected spectra reduced bias and error in SOC predicted by PLSR, particularly at slope angles greater than 30°. Our approach clears the way for investigating the spatial distributions of multiple soil properties on rough intact soil samples. 
    more » « less
  4. null (Ed.)
    A major limitation to building credible soil carbon sequestration programs is the cost of measuring soil carbon change. Diffuse reflectance spectroscopy (DRS) is considered a viable low-cost alternative to traditional laboratory analysis of soil organic carbon (SOC). While numerous studies have shown that DRS can produce accurate and precise estimates of SOC across landscapes, whether DRS can detect subtle management induced changes in SOC at a given site has not been resolved. Here, we leverage archived soil samples from seven long-term research trials in the U.S. to test this question using mid infrared (MIR) spectroscopy coupled with the USDA-NRCS Kellogg Soil Survey Laboratory MIR spectral library. Overall, MIR-based estimates of SOC%, with samples scanned on a secondary instrument, were excellent with the root mean square error ranging from 0.10 to 0.33% across the seven sites. In all but two instances, the same statistically significant (p < 0.10) management effect was found using both the lab-based SOC% and MIR estimated SOC% data. Despite some additional uncertainty, primarily in the form of bias, these results suggest that large existing MIR spectral libraries can be operationalized in other laboratories for successful carbon monitoring. 
    more » « less
  5. The preprocessing of infrared spectra can significantly improve predictive accuracy for protein, carbohydrate, lipid, or other nutrition components, yet optimal preprocessing selection is typically empirical, tedious, and dataset specific. This study introduces a Bayesian optimization-based framework designed for the automated selection of optimal spectral preprocessing pipelines within a chemometric modeling context. The framework was applied to mid-infrared spectra of milk to predict compositional parameters for fat, protein, lactose, and total solids. A total of 385 averaged spectra corresponding to 198 unique samples was split into a 70/30 ratio (training/test) using a group-aware Kennard-Stone algorithm, resulting in 269 averaged spectra (135 unique samples) for training and 116 spectra (58 unique samples) for testing. Six regression models: Elastic Net, Gradient Boosting Machines (GBM), Partial Least Squares (PLS), RidgeCV Regression, LassoLarsCV, and Support Vector Regression (SVR) were evaluated across three preprocessing conditions: (1) no preprocessing, (2) literature-derived custom preprocessing (e.g., MSC, SNV, and first and second derivatives), and (3) optimized preprocessing via the proposed Bayesian framework. Optimized preprocessing consistently outperformed other methods, with RidgeCV achieving the best performance for all components except lactose, where PLS slightly outperformed it. Improvements in predictive accuracy, particularly in terms of RMSEP were observed across all milk components. The best RMSEP results were achieved for protein (RMSEP = 0.054, R2=0.981) and lactose (RMSEP = 0.026, R2=0.917), followed by fat (RMSEP = 0.139, R2=0.926) and total solids (RMSEP = 0.154, R2=0.960). Literature-based pipelines demonstrated inconsistent effectiveness, highlighting the limitations of transferring preprocessing methods between datasets. The Bayesian optimization approach identified relatively simple yet highly effective preprocessing pipelines, typically involving few steps. By eliminating manual trial and error, this data-driven strategy offers a robust and generalizable solution that streamlines spectral modeling in dairy analysis and can be readily applied to other types of spectroscopic data across various domains. 
    more » « less