skip to main content

Title: Low-frequency and high-frequency oscillatory winds synergistically enhance nutrient entrainment and phytoplankton at fronts
When phytoplankton growth is limited by low nutrient concentrations, full-depth-integrated phytoplankton biomass increases in response to intermittent mixing events that bring nutrient-rich waters into the sunlit surface layer. Here it is shown how oscillatory winds can induce intermittent nutrient entrainment events and thereby sustain more phytoplankton at fronts in nutrient-limited oceans. Low-frequency (i.e., synoptic to planetary scale) along-front wind drives oscillatory cross-front Ekman transport, which induces intermittent deeper mixing layers on the less dense side of fronts. High-frequency wind with variance near the Coriolis frequency resonantly excites inertial oscillations, which also induce deeper mixing layers on the less dense side of fronts. Moreover, we show that low-frequency and high-frequency winds have a synergistic effect and larger impact on the deepest mixing layers, nutrient entrainment, and phytoplankton growth on the less dense side of fronts than either high-frequency winds or low-frequency winds acting alone. These theoretical results are supported by two-dimensional numerical simulations of fronts in an idealized nutrient-limited open-ocean region forced by low-frequency and high-frequency along-front winds. In these model experiments, higher-amplitude low-frequency wind strongly modulates and enhances the impact of the lower-amplitude high-frequency wind on phytoplankton at a front. Moreover, sensitivity studies emphasize that the synergistic phytoplankton response to more » low-frequency and high-frequency wind relies on the high-frequency wind just below the Coriolis frequency. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Geophysical Research: Oceans
Sponsoring Org:
National Science Foundation
More Like this
  1. In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitudemore »and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.« less
  2. The Connecticut River plume interacts with the strong tidal currents of the ambient receiving waters in eastern Long Island Sound. The plume formed during ambient flood tides is studied as an example of tidal river plumes entering into energetic ambient tidal environments in estuaries or continental shelves. Conservative passive freshwater tracers within a high-resolution nested hydrodynamic model are applied to determine how source waters from different parts of the tidal cycle contribute to plume composition and interact with bounding plume fronts. The connection to source waters can be cut off only under low-discharge conditions, when tides reverse surface flow throughmore »the mouth after max ambient flood. Upstream plume extent is limited because ambient tidal currents arrest the opposing plume propagation, as the tidal internal Froude number exceeds one. The downstream extent of the tidal plume always is within 20 km from the mouth, which is less than twice the ambient tidal excursion. Freshwaters in the river during the preceding ambient ebb are the oldest found in the new flood plume. Connectivity with source waters and plume fronts exhibits a strong upstream-to-downstream asymmetry. The arrested upstream front has high connectivity, as all freshwaters exiting the mouth immediately interact with this boundary. The downstream plume front has the lowest overall connectivity, as interaction is limited to the oldest waters since younger interior waters do not overtake this front. The offshore front and inshore boundary exhibit a downstream progression from younger to older waters and decreasing overall connectivity with source waters. Plume-averaged freshwater tracer concentrations and variances both exhibit an initial growth period followed by a longer decay period for the remainder of the tidal period. The plume-averaged tracer variance is increased by mouth inputs, decreased by entrainment, and destroyed by internal mixing. Peak entrainment velocities for younger waters are higher than values for older waters, indicating stronger entrainment closer to the mouth. Entrainment and mixing time scales (1–4 h at max ambient flood) are both shorter than half a tidal period, indicating entrainment and mixing are vigorous enough to rapidly diminish tracer variance within the plume.« less
  3. Efficient and controlled mixing of fuel with fast-moving air is a challenging physical problem relevant to hypersonic systems. Although mixing happens at the molecular level through diffusion, the macroscopic phenomena such as entrainment and vorticity dynamics resulting from the shear layer instabilities of the mixing fluids play a significant role in the overall efficiency of the process. With a focus on improving mixing at extreme flow conditions, this paper presents a fundamental study of a novel, high-speed, pulsed co-flow system integrated with ultra-high frequency actuators that operates at 11-20 kHz. This injection system consists of a supersonic actuation air jetmore »at the inner core that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle, with pulsing occurring at a designated frequency. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to a steady co-axial configuration operating at the same input pressure. Experiments also indicate a strong connection between the frequency and unsteady amplitude of the actuation jet to the supersonic flow mixing phenomena. This paper reports the design details of the injector assembly and flow mixing characteristics captured using phase-locked microschlieren and planar laser-induced fluorescence (PLIF) techniques.« less
  4. Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface oceanobservations of polynyas in winter, thereby impeding new insights into theevolution of these ice factories through the dark austral months. Here, wedescribe oceanic observations during multiple katabatic wind events duringMay 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularlyexceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m.more »During these events, conductivity–temperature–depth (CTD)profiles revealed bulges of warm, salty water directly beneath the oceansurface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production.« less
  5. Abstract Storms that produce gargantuan hail (defined here as ≥ 6 inches or 15 cm in maximum dimension), although seemingly rare, can cause extensive damage to property and infrastructure, and cause injury or even death to humans and animals. Currently, we are limited in our ability to accurately predict gargantuan hail and detect gargantuan hail on radar. In this study, we analyze the environments and radar characteristics of gargantuan hail-producing storms to define the parameter space of environments in which gargantuan hail occurs, and compare environmental parameters and radar signatures in these storms to storms producing other sizes of hail.more »We find that traditionally used environmental parameters used for severe storms prediction, such as most unstable convective available potential energy (MUCAPE) and 0–6 km vertical wind shear, display considerable overlap between gargantuan hail-producing storm environments and those that produce smaller hail. There is a slight tendency for larger MUCAPE values for gargantuan hail cases, however. Additionally, gargantuan hail-producing storms seem to have larger low-level storm-relative winds and larger updraft widths than those storms producing smaller hail, implying updrafts less diluted by entrainment and perhaps maximizing the liquid water content available for hail growth. Moreover, radar reflectivity or products derived from it are not different from cases of smaller hail sizes. However, inferred mesocyclonic rotational velocities within the hail growth region of storms that produce gargantuan hail are significantly stronger than the rotational velocities found for smaller hail categories.« less