skip to main content


Search for: All records

Award ID contains: 1421125

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Storms deepen the mixed layer, entrain nutrients from the pycnocline, and fuel phytoplankton blooms in midlatitude oceans. However, the effects of oceanic submesoscale (0.1–10 km horizontal scale) physical heterogeneity on the physical‐biogeochemical response to a storm are not well understood. Here, we explore these effects numerically in a Biogeochemical Large Eddy Simulation (BLES), where a four‐component biogeochemical model is coupled with a physical model that resolves some submesoscales and some smaller turbulent scales (2 km to 2 m) in an idealized storm forcing scenario. Results are obtained via comparisons to BLES in smaller domains that do not resolve submesoscales and to one‐dimensional column simulations with the same biogeochemical model, initial conditions, and boundary conditions but parameterized turbulence and submesoscales. These comparisons show different behaviors during and shortly after the storm. During the storm, resolved submesoscales double the vertical nutrient flux. The vertical diffusivity is increased by a factor of 10 near the mixed layer base, and the mixing‐induced increase in potential energy is double. Resolved submesoscales also enhance horizontal nutrient and phytoplankton variance by a factor of 10. After the storm, resolved submesoscales maintain higher nutrient and phytoplankton variance within the mixed layer. However, submesoscales reduce net vertical nutrient fluxes by 50% and nearly shut off the turbulent diffusivity. Over the whole scenario, resolved submesoscales double storm‐driven biological production. Current parameterizations of submesoscales and turbulence fail to capture both the enhanced nutrient flux during the storm and the enhanced biological production.

     
    more » « less
  2. Takeyoshi Nagai, Hiroaki Saito (Ed.)
    The Gulf Stream transports macronutrients poleward as a part of the Atlantic meridional overturning circulation (AMOC). Scaling shows that this advective transport is greater than diapycnal transport from deep convection in the North Atlantic and is therefore crucial for sustaining the nutrient supply to the subpolar North Atlantic on interannual timescales. Simulations of the RCP8.5 emissions scenario with the Community Earth System Model (CESM) reveal 25% declines in the Gulf Stream volume transport above the potential density surface σθ = 27.5 kg/m3 and 35% declines in the associated nitrate transport between 2006 and 2080. The declining Gulf Stream transport largely explains contemporaneous 40% declines in zonally‐integrated volume and nitrate transports in the subtropical part of the AMOC. In addition, scaling suggests that the declining Gulf Stream nitrate transport (2.4 kmol/s per year) is the dominant driver of the declining export of particulate organic nitrogen across σθ = 27.5 kg/m3 in the subpolar North Atlantic (0.57 kmol/s per year), because the declining nitrate entrainment from water with σθ > 27.5 kg/m3 is only 0.44 kmol/s per year. A review of various small‐scale ocean physical processes suggests that the projected decline in the Gulf Stream nutrient flux is qualitatively robust to uncertainties associated with ocean physics. 
    more » « less
  3. In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes. 
    more » « less
  4. When phytoplankton growth is limited by low nutrient concentrations, full-depth-integrated phytoplankton biomass increases in response to intermittent mixing events that bring nutrient-rich waters into the sunlit surface layer. Here it is shown how oscillatory winds can induce intermittent nutrient entrainment events and thereby sustain more phytoplankton at fronts in nutrient-limited oceans. Low-frequency (i.e., synoptic to planetary scale) along-front wind drives oscillatory cross-front Ekman transport, which induces intermittent deeper mixing layers on the less dense side of fronts. High-frequency wind with variance near the Coriolis frequency resonantly excites inertial oscillations, which also induce deeper mixing layers on the less dense side of fronts. Moreover, we show that low-frequency and high-frequency winds have a synergistic effect and larger impact on the deepest mixing layers, nutrient entrainment, and phytoplankton growth on the less dense side of fronts than either high-frequency winds or low-frequency winds acting alone. These theoretical results are supported by two-dimensional numerical simulations of fronts in an idealized nutrient-limited open-ocean region forced by low-frequency and high-frequency along-front winds. In these model experiments, higher-amplitude low-frequency wind strongly modulates and enhances the impact of the lower-amplitude high-frequency wind on phytoplankton at a front. Moreover, sensitivity studies emphasize that the synergistic phytoplankton response to low-frequency and high-frequency wind relies on the high-frequency wind just below the Coriolis frequency. 
    more » « less