skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling hydraulic fracture of glaciers using continuum damage mechanics
ABSTRACT The presence of water-filled crevasses is known to increase the penetration depth of crevasses and this has been hypothesized to play an important role controlling iceberg calving rate. Here, we develop a continuum-damage-based poro-mechanics formulation that enables the simulation of water-filled basal and surface crevasse propagation. The formulation incorporates a scalar isotropic damage variable into a Maxwell-type viscoelastic constitutive model for glacial ice, and the effect of the water pressure on fracture propagation using the concept of effective solid stress. We illustrate the model by simulating quasi-static hydrofracture in idealized rectangular slabs of ice in contact with the ocean. Our results indicate that water-filled basal crevasses only propagate when the water pressure is sufficiently large, and that the interaction between simultaneously propagating water-filled surface and basal crevasses can have a mutually positive influence leading to deeper crevasse propagation, which can critically affect glacial stability. Therefore, this study supports the hypothesis that hydraulic fracture is a plausible mechanism for the accelerated breakdown of glaciers.  more » « less
Award ID(s):
1341428
PAR ID:
10023790
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Glaciology
Volume:
62
Issue:
234
ISSN:
0022-1430
Page Range / eLocation ID:
794 to 804
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Hydrofracturing can enhance the depth to which crevasses propagate and, in some cases, allow full depth crevasse penetration and iceberg detachment. However, many existing crevasse models either do not fully account for the stress field driving the hydrofracture process and/or treat glacier ice as elastic, neglecting the non-linear viscous rheology. Here, we present a non-local continuum poro-damage mechanics (CPDM) model for hydrofracturing and implement it within a full Stokes finite element formulation. We use the CPDM model to simulate the propagation of water-filled crevasses in idealized grounded glaciers, and compare crevasse depths predicted by this model with those from linear elastic fracture mechanics (LEFM) and zero stress models. We find that the CPDM model is in good agreement with the LEFM model for isolated crevasses and with the zero stress model for closely-spaced crevasses, until the glacier approaches buoyancy. When the glacier approaches buoyancy, we find that the CPDM model does not allow the propagation of water-filled crevasses due to the much smaller size of the tensile stress region concentrated near the crevasse tip. Our study suggests that the combination of non-linear viscous and damage processes in ice near the tip of a water-filled crevasse can alter calving outcomes. 
    more » « less
  2. Irina Tezaur, Josefin Ahlkrona (Ed.)
    We present a finite-element-based cohesive zone model for simulating the nonlinear fracture process driving the propagation of water-filled surface crevasses in floating ice tongues. The fracture process is captured using an interface element whose constitutive behavior is described by a bilinear cohesive law, and the bulk rheology of ice is described by a nonlinear elasto-viscoplastic model. The additional loading due to meltwater pressure within the crevasse is incorporated by combining the ideas of poromechanics and damage mechanics.We performed several numerical studies to explore the parametric sensitivity of surface crevasse depth to ice rheology, cohesive strength, density, and temperature for different levels of meltwater depth.We find that viscous (creep) strain accumulation promotes crevasse propagation and that surface crevasses propagate deeper in ice shelves/tongues if we consider depth-varying ice density and temperature profiles. Therefore, ice flow models must account for depth-varying density and temperature-dependent viscosity to appropriately describe calving outcomes. 
    more » « less
  3. Abstract On the Greenland Ice Sheet, hydrofracture connects the supraglacial and subglacial hydrologic systems, coupling surface runoff dynamics and ice velocity. In recent decades, the growth of low-permeability ice slabs in the wet snow zone has expanded Greenland's runoff zone, but observations suggest that surface-to-bed connections are rare, because meltwater drains through crevasses into the porous firn beneath ice slabs. However, there is little quantitative evidence confirming the absence of surface-to-bed fracture propagation. Here, we use poromechanics to investigate whether water-filled crevasses in ice slabs can propagate vertically through an underlying porous firn layer. Based on numerical simulations, we develop an analytical estimate of the water injection-induced effective stress in the firn given the water level in the crevasse, ice slab thickness, and firn properties. We find that the firn layer substantially reduces the system's vulnerability to hydrofracture because much of the hydrostatic stress is accommodated by a change in pore pressure, rather than being transmitted to the solid skeleton. This result suggests that surface-to-bed hydrofracture will not occur in ice slab regions until all pore space proximal to the initial flaw has been filled with solid ice. 
    more » « less
  4. ABSTRACT We investigate the appropriateness of calving or crevasse models from the literature using linear elastic fracture mechanics (LEFM). To this end, we compare LEFM model-predicted stress intensity factors (SIFs) against numerically computed SIFs using the displacement correlation method in conjunction with the finite element method. We present several benchmark simulations wherein we calculate the SIF at the tips of water-filled surface and basal crevasses penetrating through rectangular ice slabs under different boundary conditions, including grounded and floating conditions. Our simulation results indicate that the basal boundary condition significantly influences the SIF at the crevasse tips. We find that the existing calving models using LEFM are not generally accurate for evaluating SIFs in grounded glaciers or floating ice shelves. We also illustrate that using the ‘single edge crack’ weight function in the LEFM formulations may be appropriate for predicting calving from floating ice shelves, owing to the low fracture toughness of ice; whereas, using the ‘double edge crack’ or ‘central through crack’ weight functions is more appropriate for predicting calving from grounded glaciers. To conclude, we recommend using the displacement correlation method for SIF evaluation in real glaciers and ice shelves with complex geometries and boundary conditions. 
    more » « less
  5. Abstract. Full-thickness crevasses can transport water from the glacier surface to the bedrock where high water pressures can open kilometre-long cracks along the basal interface, which can accelerate glacier flow. We present a first computational modelling study that describes time-dependent fracture propagation in an idealised glacier causing rapid supraglacial lake drainage. A novel two-scale numerical method is developed to capture the elastic and viscoelastic deformations of ice along with crevasse propagation. The fluid-conserving thermo–hydro–mechanical model incorporates turbulent fluid flow and accounts for melting and refreezing in fractures. Applying this model to observational data from a 2008 rapid-lake-drainage event indicates that viscous deformation exerts a much stronger control on hydrofracture propagation compared to thermal effects. This finding contradicts the conventional assumption that elastic deformation is adequate to describe fracture propagation in glaciers over short timescales (minutes to several hours) and instead demonstrates that viscous deformation must be considered to reproduce observations of lake drainage rates and local ice surface elevation changes. As supraglacial lakes continue expanding inland and as Greenland Ice Sheet temperatures become warmer than −8 °C, our results suggest rapid lake drainage events are likely to occur without refreezing, which has implications for the rate of sea level rise. 
    more » « less