skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SearchGazer: Webcam Eye Tracking for Remote Studies of Web Search
We introduce SearchGazer, a web-based eye tracker for remote web search studies using common webcams already present in laptops and some desktop computers. SearchGazer is a pure JavaScript library that infers the gaze behavior of searchers in real time. The eye tracking model self-calibrates by watching searchers interact with the search pages and trains a mapping of eye features to gaze locations and search page elements on the screen. Contrary to typical eye tracking studies in information retrieval, this approach does not require the purchase of any additional specialized equipment, and can be done remotely in a user's natural environment, leading to cheaper and easier visual attention studies. While SearchGazer is not intended to be as accurate as specialized eye trackers, it is able to replicate many of the research findings of three seminal information retrieval papers: two that used eye tracking devices, and one that used the mouse cursor as a restricted focus viewer. Charts and heatmaps from those original papers are plotted side-by-side with SearchGazer results. While the main results are similar, there are some notable differences, which we hypothesize derive from improvements in the latest ranking technologies used by current versions of search engines and diligence by remote users. As part of this paper, we also release SearchGazer as a library that can be integrated into any search page.  more » « less
Award ID(s):
1464061 1552663
PAR ID:
10024075
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval - CHIIR '17
Page Range / eLocation ID:
17-26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce WebGazer, an online eye tracker that uses common webcams already present in laptops and mobile devices to infer the eye-gaze locations of web visitors on a page in real time. The eye tracking model self-calibrates by watching web visitors interact with the web page and trains a mapping between features of the eye and positions on the screen. This approach aims to provide a natural experience to everyday users that is not restricted to laboratories and highly controlled user studies. WebGazer has two key components: a pupil detector that can be combined with any eye detection library, and a gaze estimator using regression analysis informed by user interactions. We perform a large remote online study and a small in-person study to evaluate WebGazer. The findings show that WebGazer can learn from user interactions and that its accuracy is sufficient for approximating the user's gaze. As part of this paper, we release the first eye tracking library that can be easily integrated in any website for real-time gaze interactions, usability studies, or web research. 
    more » « less
  2. With innovations in the field of gaze and eye tracking, a new concentration of research in the area of gaze-tracked systems and user interfaces has formed in the field of Extended Reality (XR). Eye trackers are being used to explore novel forms of spatial human–computer interaction, to understand human attention and behavior, and to test expectations and human responses. In this article, we review gaze interaction and eye tracking research related to XR that has been published since 1985, which includes a total of 215 publications. We outline efforts to apply eye gaze for direct interaction with virtual content and design of attentive interfaces that adapt the presented content based on eye gaze behavior and discuss how eye gaze has been utilized to improve collaboration in XR. We outline trends and novel directions and discuss representative high-impact papers in detail. 
    more » « less
  3. Video-based eye trackers increasingly have potential to improve on-screen magnification for low-vision computer users. Yet, little is known about the viability of eye tracking hardware for gaze-guided magnification. We employed a magnification prototype to assess eye tracking quality for low-vision users as they performed reading and search tasks. We show that a high degree of tracking loss prevents current video-based eye tracking from capturing gaze input for low-vision users. Our findings show current technologies were not made with low vision users in mind, and we offer suggestions to improve gaze-tracking for diverse eye input. 
    more » « less
  4. Emerging Virtual Reality (VR) displays with embedded eye trackers are currently becoming a commodity hardware (e.g., HTC Vive Pro Eye). Eye-tracking data can be utilized for several purposes, including gaze monitoring, privacy protection, and user authentication/identification. Identifying users is an integral part of many applications due to security and privacy concerns. In this paper, we explore methods and eye-tracking features that can be used to identify users. Prior VR researchers explored machine learning on motion-based data (such as body motion, head tracking, eye tracking, and hand tracking data) to identify users. Such systems usually require an explicit VR task and many features to train the machine learning model for user identification. We propose a system to identify users utilizing minimal eye-gaze-based features without designing any identification-specific tasks. We collected gaze data from an educational VR application and tested our system with two machine learning (ML) models, random forest (RF) and k-nearest-neighbors (kNN), and two deep learning (DL) models: convolutional neural networks (CNN) and long short-term memory (LSTM). Our results show that ML and DL models could identify users with over 98% accuracy with only six simple eye-gaze features. We discuss our results, their implications on security and privacy, and the limitations of our work. 
    more » « less
  5. null (Ed.)
    Eye tracking tools are used in software engineering research to study various software development activities. However, a major limitation of these tools is their inability to track gaze data for activities that involve source code editing. We present a novel solution to support eye tracking experiments for tasks involving source code edits as an extension of the iTrace community infrastructure. We introduce the iTrace-Atom plugin and gazel—a Python data processing pipeline that maps gaze information to changing source code elements and provides researchers with a way to query this dynamic data. iTrace-Atom is evaluated via a series of simulations and is over 99% accurate at high eye-tracking speeds of over 1,000Hz. iTrace and gazel completely revolutionize the way eye tracking studies are conducted in realistic settings with the presence of scrolling, context switching, and now editing. This opens the doors to support many day-to-day software engineering tasks such as bug fixing, adding new features, and refactoring. 
    more » « less