Seawater microorganisms play an important role in coral reef ecosystem functioning and can be influenced by biological, chemical, and physical features of reefs. As coral reefs continue to respond to environmental changes, the reef seawater microbiome has been proposed as a conservation tool for monitoring perturbations. However, the spatial variability of reef seawater microbial communities is not well studied, limiting our ability to make generalizable inferences across reefs. In order to better understand how microorganisms are distributed at multiple spatial scales, we examined seawater microbial communities in Florida Reef Tract and US Virgin Islands reef systems using a nested sampling design. On 3 reefs per reef system, we sampled seawater at regular spatial intervals close to the benthos. We assessed the microbial community composition of these waters using ribosomal RNA gene amplicon sequencing. Our analysis revealed that reef water microbial communities varied as a function of reef system and individual reefs, but communities did not differ within reefs and were not significantly influenced by benthic composition. For the reef system and inter-reef differences, abundant microbial taxa were found to be potentially useful indicators of environmental difference due to their high prevalence and variance. We further examined reef water microbial biogeography on a global scale using a secondary analysis of 5 studies, which revealed that microbial communities were more distinct with increasing geographic distance. These results suggest that biogeography is a distinguishing feature for reef water microbiomes, and that development of monitoring criteria may necessitate regionally specific sampling and analyses. 
                        more » 
                        « less   
                    
                            
                            Social interactions among grazing reef fish drive material flux in a coral reef ecosystem
                        
                    - Award ID(s):
- 1637396
- PAR ID:
- 10024843
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 114
- Issue:
- 18
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 4703 to 4708
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Through idealized, numerical models this paper investigates flows on a reef geometry which has received significant attention in the literature; a shallow, fringing reef with deeper, shore-ward pools or lagoons. Given identical model geometries and varying only reef flat drag coefficients between model runs ( $$C_D = [0.001,0.005,0.01,0.05,0.1]$$ C D = [ 0.001 , 0.005 , 0.01 , 0.05 , 0.1 ] ), two distinct circulation patterns emerge. One is related to low reef water levels and high roughness, and efficiently flushes the entire reef system resulting in low residence times (an ‘open reef’). The other is related to high reef water levels and low roughness, and in spite of the development of an offshore undertow, this dynamic is inefficient at flushing the reef-pool system and facilitating exchange flow with offshore waters (a ‘closed reef’). This paper shows that even given indistinguishable geometry and offshore conditions, this information is insufficient to predict reef dynamics, and suggests that reef roughness (and thus reef health) plays a comparable role in determining circulation patterns and residence times. Furthermore, a transition from open to closed or vice versa caused by e.g., a loss of reef roughness or increase in mean sea level could have implications for transport and mixing of nutrients and water masses, as well as larval dispersal.more » « less
- 
            Coral reef ecosystems are incredibly diverse marine biomes that rely on nutrient cycling by microorganisms to sustain high productivity in generally oligotrophic regions of the ocean. Understanding the composition of extracellular reef metabolites in seawater, the small organic molecules that serve as the currency for microorganisms, may provide insight into benthic-pelagic coupling as well as the complexity of nutrient cycling in coral reef ecosystems. Jardines de la Reina (JR), Cuba is an ideal environment to examine extracellular metabolites across protected and high-quality reefs. Here, we used liquid chromatography mass spectrometry (LC-MS) to quantify specific known metabolites of interest (targeted metabolomics approach) and to survey trends in metabolite feature composition (untargeted metabolomics approach) from surface and reef depth (6 – 14 m) seawater overlying nine forereef sites in JR. We found that untargeted metabolite feature composition was surprisingly similar between reef depth and surface seawater, corresponding with other biogeochemical and physicochemical measurements and suggesting that environmental conditions were largely homogenous across forereefs within JR. Additionally, we quantified 32 of 53 detected metabolites using the targeted approach, including amino acids, nucleosides, vitamins, and other metabolic intermediates. Two of the quantified metabolites, riboflavin and xanthosine, displayed interesting trends by depth. Riboflavin concentrations were higher in reef depth compared to surface seawater, suggesting that riboflavin may be produced by reef organisms at depth and degraded in the surface through photochemical oxidation. Xanthosine concentrations were significantly higher in surface reef seawater. 5′-methylthioadenosine (MTA) concentrations increased significantly within the central region of the archipelago, displaying biogeographic patterns that warrant further investigation. Here we lay the groundwork for future investigations of variations in metabolite composition across reefs, sources and sinks of reef metabolites, and changes in metabolites over environmental, temporal, and reef health gradients.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
