skip to main content

Search for: All records

Award ID contains: 1637396

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Mass thermal bleaching events are a primary threat to coral reefs, yet the sublethal impacts, particularly on energetics and reproduction, are poorly characterized. Given that the persistence of coral populations is contingent upon the reproduction of individuals that survive disturbances, there is an urgent need to understand the sublethal effects of bleaching on reproductive output to accurately predict coral recovery rates. In 2019, the French Polynesian island of Mo’orea experienced a severe mass bleaching event accompanied by widespread coral mortality. At the most heavily impacted sites, we observedAcropora hyacinthusindividuals that were resistant to bleaching, alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. We collected fragments fromA. hyacinthuscolonies five months post-bleaching and, using energetic assays and histological measurements, examined the physiological and reproductive consequences of these two distinct heat stress responses. Despite healthy appearances in both resistant and recovered corals, we found that recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, we detected compound effects of stress on reproduction: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. Our results indicate that bleaching inflicts an energetic constraint on the concurrent re-accumulation ofmore »energy reserves and development of reproductive material, with decreased reproductive potential of survivors possibly hampering overall reef resilience. These findings highlight the presence of intraspecific responses to bleaching and the importance of considering multiple trajectories for individual species when predicting population recovery following disturbance.

    « less
  2. Abstract

    The relative importance of evolutionary history and ecology for traits that drive ecosystem processes is poorly understood. Consumers are essential drivers of nutrient cycling on coral reefs, and thus ecosystem productivity. We use nine consumer “chemical traits” associated with nutrient cycling, collected from 1,572 individual coral reef fishes (178 species spanning 41 families) in two biogeographic regions, the Caribbean and Polynesia, to quantify the relative importance of phylogenetic history and ecological context as drivers of chemical trait variation on coral reefs. We find: (1) phylogenetic relatedness is the best predictor of all chemical traits, substantially outweighing the importance of ecological factors thought to be key drivers of these traits, (2) phylogenetic conservatism in chemical traits is greater in the Caribbean than Polynesia, where our data suggests that ecological forces have a greater influence on chemical trait variation, and (3) differences in chemical traits between regions can be explained by differences in nutrient limitation associated with the geologic context of our study locations. Our study provides multiple lines of evidence that phylogeny is a critical determinant of contemporary nutrient dynamics on coral reefs. More broadly our findings highlight the utility of evolutionary history to improve prediction in ecosystem ecology.

  3. Abstract

    Rainfall mobilizes and transports anthropogenic sources of sediments and nutrients from terrestrial to coastal marine ecosystems, and episodic but extreme rainfall may drive high fluxes to marine communities. Between January 13thand January 22nd, 2017, the South Pacific Island of Moorea, French Polynesia experienced an extreme rainfall event. ~57 cm of rain was delivered over a 10-day storm. We quantified pulsed sediments and nutrients transported to nearshore reefs. We determined the spatial and temporal extent of the sediment pulse with estimates of water transparency. We quantified pulsed nutrients at multiple spatial and temporal scales. To determine if terrestrial nutrients were incorporated into the benthic community, we collected macroalgae over 10 days following the storm and measured tissue nutrient concentrations and δN15. Pulsed sediments impacted water clarity for 6 days following the storm, with greatest impacts closest to the river mouth. Nitrite +nitrate concentrations were >100 times the average while phosphate was >25 times average. Macroalgal tissue nutrients were elevated, and δN15implicates sewage as the source, demonstrating transported nutrients were transferred to producer communities. Future climate change predictions suggest extreme rainfall will become more common in this system, necessitating research on these pulses and their ramifications on marine communities.

  4. Free, publicly-accessible full text available May 1, 2023
  5. Free, publicly-accessible full text available April 1, 2023
  6. Free, publicly-accessible full text available April 1, 2023
  7. Free, publicly-accessible full text available April 1, 2023
  8. Free, publicly-accessible full text available February 1, 2023
  9. Free, publicly-accessible full text available February 1, 2023
  10. Free, publicly-accessible full text available February 1, 2023