skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain That Mediates Holoenzyme Assembly
Award ID(s):
1149763
PAR ID:
10025062
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Biological Chemistry
Volume:
290
Issue:
31
ISSN:
0021-9258
Page Range / eLocation ID:
19319 to 19333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We identify a set of ∼100 “cold” solar flares and perform a statistical analysis of them in the microwave range. Cold flares are characterized by a weak thermal response relative to nonthermal emission. This work is a follow-up of a previous statistical study of cold flares, which focused on hard X-ray emission to quantify the flare nonthermal component. Here, we focus on the microwave emission. The thermal response is evaluated by the soft X-ray emission measured by the GOES X-ray sensors. We obtain spectral parameters of the flare gyrosynchrotron emission and reveal patterns of their temporal evolution. The main results of the previous statistical study are confirmed: as compared to a “mean” flare, the cold flares have shorter durations, higher spectral peak frequencies, and harder spectral indices above the spectral peak. Nonetheless, there are some cold flares with moderate and low peak frequencies. In the majority of cold flares, we find evidence of the Razin effect in the microwave spectra, indicative of rather dense flaring loops. We discuss the results in the context of the electron acceleration efficiency. 
    more » « less
  2. This paper re-traverses the author's investigations across several years as he sought to pin-down the meaning of the in vivo category 'domain'. The paper is a methodological reflection on the grounded theory approach to concept development, with a focus on the technical terms: in vivo category, iteration on the code, and sensitizing category. It is also a substantive theoretical contribution, elaborating the concept of a domain in computing, data and information science, and how it has long served as an organizing principle for developing computational systems. Four tricks of the trade for studying the 'logic of domains' are offered as sensitizing concepts to aid future investigations. 
    more » « less
  3. Summary Evolutionarily conserved DEK domain‐containing proteins have been implicated in multiple chromatin‐related processes, mRNA splicing and transcriptional regulation in eukaryotes.Here, we show that two DEK proteins, DEK3 and DEK4, control the floral transition inArabidopsis. DEK3 and DEK4 directly associate with chromatin of related flowering repressors,FLOWERING LOCUS C(FLC), and its two homologs,MADS AFFECTING FLOWERING4(MAF4) andMAF5, to promote their expression.The binding of DEK3 and DEK4 to a histone octamerin vivoaffects histone modifications atFLC,MAF4andMAF5loci. In addition, DEK3 and DEK4 interact with RNA polymerase II and promote the association of RNA polymerase II withFLC,MAF4andMAF5chromatin to promote their expression.Our results show that DEK3 and DEK4 directly interact with chromatin to facilitate the transcription of key flowering repressors and thus prevent precocious flowering inArabidopsis. 
    more » « less
  4. ABSTRACT Short-period Galactic white dwarf binaries detectable by Laser Interferometer Space Antenna are the only guaranteed persistent sources for multimessenger gravitational-wave astronomy. Large-scale surveys in the 2020s present an opportunity to conduct preparatory science campaigns to maximize the science yield from future multimessenger targets. The Nancy Grace Roman Space Telescope Galactic Bulge Time-Domain Survey will (in its Reference Survey design) image seven fields in the Galactic Bulge approximately 40 000 times each. Although the Reference Survey cadence is optimized for detecting exoplanets via microlensing, it is also capable of detecting short-period white dwarf binaries. In this paper, we present forecasts for the number of detached short-period binaries the Roman Galactic Bulge Time-Domain Survey will discover and the implications for the design of electromagnetic surveys. Although population models are highly uncertain, we find a high probability that the baseline survey will detect of the order of ∼5 detached white dwarf binaries. The Reference Survey would also have a $${\gtrsim} 20\,{\rm per\,cent}$$ chance of detecting several known benchmark white dwarf binaries at the distance of the Galactic Bulge. 
    more » « less