skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Citizens’ Initiative Review process: mediating emotions, promoting productive deliberation
The interplay between emotion and reason is of interest to scholars of deliberative democracy, yet it has been little analysed. Examining a 2010 Citizens’ Initiative Review (CIR) in Oregon, USA, we find (1) that the participation of chief petitioners, advocates and witnesses is conducive to the expression of emotions and (2) that, aided by moderators, panellists remain focused on clarifying key points and writing their Citizens’ Statement. We conclude that the competitive–collaborative structure of the CIR offers opportunities for emotional expression and reasoned deliberation while productively combining these important forms of discourse.  more » « less
Award ID(s):
1357276
PAR ID:
10025437
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Policy and politics
ISSN:
1470-8442
Page Range / eLocation ID:
1-16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The present study explores an RNA we have discovered in human heart that induces differentiation of mouse embryonic stem cells and human induced pluripotent stem cells into cardiomyocytes in vitro. We have designated this RNA as Cardiac Inducing RNA or CIR. We now find that CIR also induces mouse embryonic fibroblasts (MEF) to form cardiomyocytes in vitro. For these studies, human-derived CIR is transfected into MEF using lipofectamine. The CIR-transfected mouse fibroblasts exhibit spindle-shaped cells, characteristic of myocardial cells in culture, and express cardiac-specific troponin-T and cardiac tropomyosin. As such, the CIR-induced conversion of the fibroblasts into cardiomyocytes in vitro appears to take place without initial dedifferentiation into pluripotent stem cells. Instead, after CIR transfection using a lipofectamine transfection system, over the next 8 days there appears to be a direct transdifferentiation of ˃80% of the cultured fibroblasts into definitive cardiomyocytes. Fewer than ˂7% of the untreated controls using non-active RNA or lipofectamine by itself show cardiomyocyte characteristics. Thus, discovery of CIR may hold significant potential for future use in repair/regeneration of damaged myocardial tissue in humans after myocardial infarction or other disease processes such that affected patients may be able to return to pre-heart-disease activity levels. 
    more » « less
  2. Abstract A multispecies energetic particle intensity enhancement event at 1 au is analyzed. We identify this event as a corotating interaction region (CIR) structure that includes a stream interface (SI), a forward-reverse shock pair, and an embedded heliospheric current sheet (HCS). The distinct feature of this CIR event is that (1) the high-energy (>1 MeV) ions show significant flux enhancement at the reverse wave (RW)/shock of the CIR structure, following their passage through the SI and HCS. The flux amplification appears to depend on the energy per nucleon. (2) Electrons in the energy range of 40.5–520 keV are accelerated immediately after passing through the SI and HCS regions, and the flux quickly reaches a peak for low-energy electrons. At the RW, only high-energy electrons (∼520 keV) show significant local flux enhancement. The CIR structure is followed by a fast-forward perpendicular shock driven by a coronal mass ejection (CME), and we observed a significant flux enhancement of low-energy protons and high-energy electrons. Specifically, the 210–330 keV proton and 180–520 keV electron fluxes are enhanced by approximately 2 orders of magnitude. This suggests that the later ICME-driven shock may accelerate particles out of the suprathermal pool. In this paper, we further present that for CIR-accelerated particles, the increase in turbulence power at SI and RWs may be an important factor for the observed flux enhancement in different species. The presence of ion-scale waves near the RW, as indicated by the spectral bump near the proton gyrofrequency, suggests that the resonant wave–particle interaction may act as an efficient energy transferrer between energetic protons and ion-scale waves. 
    more » « less
  3. null (Ed.)
    We have discovered a cardiac-inducing RNA (CIR) in the axolotl, Ambystoma mexicanum, (a salamander) and two cardiac inducing RNAs (CIR-6 and CIR-30) in human heart that have the ability to induce the differentiation of non-muscle cells, including induced pluripotent stem cells from human skin, mouse embryonic stem cells, and mouse fibroblasts into cardiomyocytes in vitro. Although the primary sequences of salamander and human RNAs are not homologous, their secondary structures are very similar and we believe account for their shared unique abilities to promote differentiation of non-muscle cells into definitive cardiomyocytes. We are beginning to explore the potential for repair/regeneration of cardiac muscle in vivo using mouse and rat models with induced acute myocardial infarctions (AMI) to determine if pluripotent stem cells or fibroblasts transfected with the human CIRs or CIRs alone injected into the damaged areas of the hearts can effect repair of the damaged cardiac muscle tissue, and return the infarcted hearts and the AMI animal models to pre-heart-attack function again. If cardiac cells damaged in heart attacks can be replaced with living, functioning cardiomyocytes, patients with heart disease would be able to have normal heart function restored and could return to normal pre-heart-attack activity levels. Understanding how CIR transforms non-muscle cells into vigorously contracting, functional cardiac muscle and effectively replacing damaged heart cells with newly-formed cardiac muscle tissue would represent a major breakthrough in modern biology and medicine with the potential to have a significant impact on the survival rate and quality of life of millions of individuals worldwide who suffer heart attacks each year. 
    more » « less
  4. An underwater acoustic (UWA) channel model with high validity and re-usability is widely demanded. In this paper, we propose a variational auto-encoder (VAE)-based deep generative model which learns an abstract representation of the UWA channel impulse responses (CIRs) and can generate CIR samples with similar features. A customized training process is proposed to avoid the model collapse and being trapped in a gradient pit. The proposed deep generative model is validated using field experimental data sets. 
    more » « less
  5. The effect of the turbulence that is associated with solar wind corotating interaction regions (CIRs) on transport of galactic cosmic rays remains an outstanding problem in space science. Observations show that the intensities of the plasma and magnetic fluctuations are enhanced within a CIR. The velocity shear layer between the slow and fast wind embedded in a CIR is thought to be responsible for this enhancement in turbulent energy. We perform physics-based magnetohydrodynamic simulations of the plasma background and turbulent fluctuations in the solar wind dominated by CIRs for radial distances between 0.3 and 5 au. A simple but effective approach is used to incorporate the inner boundary conditions for the solar wind and magnetic field for the periods 2007–2008 and 2017–2018. Legendre coefficients at the source surface obtained from the Wilcox Solar Observatory library are utilized for dynamic reconstructions of the current sheet and the fast and slow streams at the inner boundary. The dynamic inner boundary enables our simulations to generate CIRs that are reasonably comparable with observations near Earth. While the magnetic field structure is reasonably well reproduced, the enhancements in the turbulent energy at the stream interfaces are smaller than observed. A superposed epoch analysis is performed over several CIRs from the simulation and compared to the superposed epoch analysis of the observed CIRs. The results for the turbulent energy and correlation length are used to estimate the diffusion tensor of galactic cosmic rays. The derived diffusion coefficients could be used for more realistic modeling of cosmic rays in a dynamically evolving inner heliosphere. 
    more » « less