Abstract Visual cortical responses are known to be highly variable across trials within an experimental session. However, the long-term stability of visual cortical responses is poorly understood. Here using chronic imaging of V1 in mice we show that neural responses to repeated natural movie clips are unstable across weeks. Individual neuronal responses consist of sparse episodic activity which are stable in time but unstable in gain across weeks. Further, we find that the individual episode, instead of neuron, serves as the basic unit of the week-to-week fluctuation. To investigate how population activity encodes the stimulus, we extract a stable one-dimensional representation of the time in the natural movie, using an unsupervised method. Most week-to-week fluctuation is perpendicular to the stimulus encoding direction, thus leaving the stimulus representation largely unaffected. We propose that precise episodic activity with coordinated gain changes are keys to maintain a stable stimulus representation in V1.
more »
« less
Long time no see: enduring behavioral and neuronal changes in perceptual learning of motion trajectories 3 years after training.
Here, we report on the long-term stability of changes in behavior and brain activity following perceptual learning of conjunctions of simple motion features. Participants were trained for 3 weeks on a visual search task involving the detection of a dot moving in a “v”-shaped target trajectory among inverted “v”-shaped distractor trajectories. The first and last training sessions were carried out during functional magnetic resonance imaging (fMRI). Learning stability was again examined behaviorally and using fMRI 3 years after the end of training. Results show that acquired behavioral improvements were remarkably stable over time and that these changes were specific to trained target and distractor trajectories. A similar pattern was observed on the neuronal level, when the representation of target and distractor stimuli was examined in early retinotopic visual cortex (V1–V3): training enhanced activity for the target relative to the surrounding distractors in the search array and this enhancement persisted after 3 years. However, exchanging target and distractor trajectories abolished both neuronal and behavioral effects, suggesting that training-induced changes in stimulus representation are specific to trained stimulus identities.
more »
« less
- Award ID(s):
- 1632738
- PAR ID:
- 10025808
- Date Published:
- Journal Name:
- Cerebral cortex
- ISSN:
- 1047-3211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the laboratory, visual search is often studied using uniform backgrounds. This contrasts with search in daily life, where potential search items appear against more complex backgrounds. In the present study, we examined the effects of background complexity on a parallel visual search under conditions where objects are easily segregated from the background. Target–distractor similarity was sufficiently low such that search could unfold in parallel, as indexed by reaction times that increase logarithmically with set size. The results indicate that when backgrounds are relatively simple (sandy beach with water elements), search efficiency is comparable to search using a solid background. When backgrounds are more complex (child bedroom or checkerboard), logarithmic search slopes increase compared to search on solid backgrounds, especially at higher levels of target–distractor similarity. The results are discussed in terms of different theories of visual search. It is proposed that the complex visual information occurring in between distractors slows down individual distractor rejection times by weakening the strength of interitem interactions.more » « less
-
Perceptual experiences may arise from neuronal activity patterns in mammalian neocortex. We probed mouse neocortex during visual discrimination using a red-shifted channelrhodopsin (ChRmine, discovered through structure-guided genome mining) alongside multiplexed multiphoton-holography (MultiSLM), achieving control of individually specified neurons spanning large cortical volumes with millisecond precision. Stimulating a critical number of stimulus-orientation-selective neurons drove widespread recruitment of functionally related neurons, a process enhanced by (but not requiring) orientation-discrimination task learning. Optogenetic targeting of orientation-selective ensembles elicited correct behavioral discrimination. Cortical layer–specific dynamics were apparent, as emergent neuronal activity asymmetrically propagated from layer 2/3 to layer 5, and smaller layer 5 ensembles were as effective as larger layer 2/3 ensembles in eliciting orientation discrimination behavior. Population dynamics emerging after optogenetic stimulation both correctly predicted behavior and resembled natural internal representations of visual stimuli at cellular resolution over volumes of cortex.more » « less
-
The pulvinar, also called the lateral posterior nucleus of the thalamus in rodents, is one of the higher-order thalamic relays and the main visual extrageniculate thalamic nucleus in rodents and primates. Although primate studies report the pulvinar is engaged under attentional demands, there are open questions about the detailed role of the pulvinar in visuospatial attention. The pulvinar provides the primary thalamic input to the posterior parietal cortex (PPC). Both the pulvinar and the PPC are known to be important for visuospatial attention. Our previous work showed that neuronal activity in the PPC correlated with multiple phases of a visuospatial attention (VSA) task, including onset of the visual stimuli, decision-making, task-relevant locations, and behavioral outcomes. Here, we hypothesized that the pulvinar, as the major thalamic input to the PPC, is involved in visuospatial attention as well as in other cognitive functions related to the processing of visual information. We recorded the neuronal activity of the pulvinar in rats during their performance on the VSA task. The task was designed to engage goal-directed, top–down attention as well as stimulus-driven, bottom–up attention. Rats monitored three possible locations for the brief appearance of a target stimulus. An approach to the correct target location was followed by a liquid reward. For analysis, each trial was divided into behavioral epochs demarcated by stimulus onset, selection behavior, and approach to reward. We found that neurons in the pulvinar signaled stimulus onset and selection behavior consistent with the interpretation that the pulvinar is engaged in both bottom–up and top–down visuospatial attention. Our results also suggested that pulvinar cells responded to allocentric and egocentric task-relevant locations.more » « less
-
Abstract It has been suggested that the visual system samples attended information rhythmically. Does rhythmic sampling also apply to distracting information? How do attended information and distracting information compete temporally for neural representations? We recorded electroencephalography from participants who detected instances of coherent motion in a random dot kinematogram (RDK; the target stimulus), overlayed on different categories (pleasant, neutral, and unpleasant) of affective images from the International Affective System (IAPS) (the distractor). The moving dots were flickered at 4.29 Hz whereas the IAPS pictures were flickered at 6 Hz. The time course of spectral power at 4.29 Hz (dot response) was taken to index the temporal dynamics of target processing. The spatial pattern of the power at 6 Hz was similarly extracted and subjected to a MVPA decoding analysis to index the temporal dynamics of processing pleasant, neutral, or unpleasant distractor pictures. We found that (1) both target processing and distractor processing exhibited rhythmicity at ∼1 Hz and (2) the phase difference between the two rhythmic time courses were related to task performance, i.e., relative phase closer to π predicted a higher rate of coherent motion detection whereas relative phase closer to 0 predicted a lower rate of coherent motion detection. These results suggest that (1) in a target-distractor scenario, both attended and distracting information were sampled rhythmically and (2) the more target sampling and distractor sampling were separated in time within a sampling cycle, the less distraction effects were observed, both at the neural and the behavioral level.more » « less
An official website of the United States government

