The International Affective Picture System (IAPS) contains 1,182 well-characterized photographs depicting natural scenes varying in affective content. These pictures are used extensively in affective neuroscience to investigate the neural correlates of emotional processing. Recently, in an effort to augment this dataset, we have begun to generate synthetic emotional images by combining IAPS pictures and diffusion-based AI models. The goal of this study is to compare the neural responses to IAPS pictures and matching AI-generated images. The stimulus set consisted of 60 IAPS pictures (20 pleasant, 20 neutral, 20 unpleasant) and 60 matching AI-generated images (20 pleasant, 20 neutral, 20 unpleasant). In a recording session, a total of 30 IAPS pictures and 30 matching AI-generated images were presented in random order, where each image was displayed for 3 seconds with neighboring images being separated by an interval of 2.8 to 3.5 seconds. Each experiment consisted of 10 recording sessions. The fMRI data was recorded on a 3T Siemens Prisma scanner. Pupil responses to image presentation were monitored using an MRI-compatible eyetracker. Our preliminary analysis of the fMRI data (N=3) showed that IAPS pictures and matching AI-generated images evoked similar neural responses in the visual cortex. In particular, MVPA (Multivariate Pattern Analysis) classifiers built to decode emotional categories from neural responses to IAPS pictures can be used to decode emotional categories from neural responses to AI-generated images and vice versa. Efforts to confirm these findings are underway by recruiting additional participants. Analysis is also being expanded to include the comparison of such measures as functional connectivity and pupillometry.
more »
« less
This content will become publicly available on April 24, 2026
Rhythmic Sampling and Competition of Target and Distractor in a Motion Detection Task
Abstract It has been suggested that the visual system samples attended information rhythmically. Does rhythmic sampling also apply to distracting information? How do attended information and distracting information compete temporally for neural representations? We recorded electroencephalography from participants who detected instances of coherent motion in a random dot kinematogram (RDK; the target stimulus), overlayed on different categories (pleasant, neutral, and unpleasant) of affective images from the International Affective System (IAPS) (the distractor). The moving dots were flickered at 4.29 Hz whereas the IAPS pictures were flickered at 6 Hz. The time course of spectral power at 4.29 Hz (dot response) was taken to index the temporal dynamics of target processing. The spatial pattern of the power at 6 Hz was similarly extracted and subjected to a MVPA decoding analysis to index the temporal dynamics of processing pleasant, neutral, or unpleasant distractor pictures. We found that (1) both target processing and distractor processing exhibited rhythmicity at ∼1 Hz and (2) the phase difference between the two rhythmic time courses were related to task performance, i.e., relative phase closer to π predicted a higher rate of coherent motion detection whereas relative phase closer to 0 predicted a lower rate of coherent motion detection. These results suggest that (1) in a target-distractor scenario, both attended and distracting information were sampled rhythmically and (2) the more target sampling and distractor sampling were separated in time within a sampling cycle, the less distraction effects were observed, both at the neural and the behavioral level.
more »
« less
- Award ID(s):
- 2318886
- PAR ID:
- 10620703
- Publisher / Repository:
- eLife Sciences Publications Ltd.
- Date Published:
- Subject(s) / Keyword(s):
- EEG attention
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wei, Xue-Xin (Ed.)Recent neuroimaging studies have shown that the visual cortex plays an important role in representing the affective significance of visual input. The origin of these affect-specific visual representations is debated: they are intrinsic to the visual system versus they arise through reentry from frontal emotion processing structures such as the amygdala. We examined this problem by combining convolutional neural network (CNN) models of the human ventral visual cortex pre-trained on ImageNet with two datasets of affective images. Our results show that in all layers of the CNN models, there were artificial neurons that responded consistently and selectively to neutral, pleasant, or unpleasant images and lesioning these neurons by setting their output to zero or enhancing these neurons by increasing their gain led to decreased or increased emotion recognition performance respectively. These results support the idea that the visual system may have the intrinsic ability to represent the affective significance of visual input and suggest that CNNs offer a fruitful platform for testing neuroscientific theories.more » « less
-
null (Ed.)This paper introduces a new ROSbag-based multimodal affective dataset for emotional and cognitive states generated using the Robot Operating System (ROS). We utilized images and sounds from the International Affective Pictures System (IAPS) and the International Affective Digitized Sounds (IADS) to stimulate targeted emotions (happiness, sadness, anger, fear, surprise, disgust, and neutral), and a dual N-back game to stimulate different levels of cognitive workload. 30 human subjects participated in the user study; their physiological data were collected using the latest commercial wearable sensors, behavioral data were collected using hardware devices such as cameras, and subjective assessments were carried out through questionnaires. All data were stored in single ROSbag files rather than in conventional Comma-Separated Values (CSV) files. This not only ensures synchronization of signals and videos in a data set, but also allows researchers to easily analyze and verify their algorithms by connecting directly to this dataset through ROS. The generated affective dataset consists of 1,602 ROSbag files, and the size of the dataset is about 787GB. The dataset is made publicly available. We expect that our dataset can be a great resource for many researchers in the fields of affective computing, Human-Computer Interaction (HCI), and Human-Robot Interaction (HRI).more » « less
-
We introduce a novel framework for emotional state detection from facial expression targeted to learning environments. Our framework is based on a convolutional deep neural network that classifies people’s emotions that are captured through a web-cam. For our classification outcome we adopt Russel’s model of core affect in which any particular emotion can be placed in one of four quadrants: pleasant-active, pleasant-inactive, unpleasant-active, and unpleasant-inactive. We gathered data from various datasets that were normalized and used to train the deep learning model. We use the fully-connected layers of the VGG_S network which was trained on human facial expressions that were manually labeled. We have tested our application by splitting the data into 80:20 and re-training the model. The overall test accuracy of all detected emotions was 66%. We have a working application that is capable of reporting the user emotional state at about five frames per second on a standard laptop computer with a web-cam. The emotional state detector will be integrated into an affective pedagogical agent system where it will serve as a feedback to an intelligent animated educational tutor.more » « less
-
Here, we report on the long-term stability of changes in behavior and brain activity following perceptual learning of conjunctions of simple motion features. Participants were trained for 3 weeks on a visual search task involving the detection of a dot moving in a “v”-shaped target trajectory among inverted “v”-shaped distractor trajectories. The first and last training sessions were carried out during functional magnetic resonance imaging (fMRI). Learning stability was again examined behaviorally and using fMRI 3 years after the end of training. Results show that acquired behavioral improvements were remarkably stable over time and that these changes were specific to trained target and distractor trajectories. A similar pattern was observed on the neuronal level, when the representation of target and distractor stimuli was examined in early retinotopic visual cortex (V1–V3): training enhanced activity for the target relative to the surrounding distractors in the search array and this enhancement persisted after 3 years. However, exchanging target and distractor trajectories abolished both neuronal and behavioral effects, suggesting that training-induced changes in stimulus representation are specific to trained stimulus identities.more » « less
An official website of the United States government
