skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: The Nip Mechanics of Nano-Impression Lithography in Roll-to-Roll Process Machines
Nano-Impression Lithography (NIL) has been demonstrated to produce nano features on webs that have value to society. Such demonstrations have largely been the result of NIL processes that involve the discrete stamping of a mold with nano-impressions into a thermoplastic web or a web coated with resin that is cured during the imprint process. To scale NIL to large area products which can be produced economically requires the imprinting to occur on roll-to-roll (R2R) process machines. Nip mechanics is a topic which has been explored in relation to drive nips and winding nips in R2R machines. Nip rollers will be needed to imprint webs at production speeds to ensure mold filling on an imprint roller. The objective of this paper is to demonstrate while the nip roller is required that it can also induce imperfections in the imprinted nano-features. Successful imprinting will require nip loads sufficient to fill the imprint mold and then addressing the nip mechanics which can induce shear and slip that could destroy the nano-features. The objective is to demonstrate through the study of nip mechanics that this shear and slip can be inhibited through the selection of nip materials and tension control of the web entering and exiting the nipped imprint roller.  more » « less
Award ID(s):
1635636
NSF-PAR ID:
10025810
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Fourteenth International Conference on Web Handling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Based on a model developed for the roll-to-roll imprinting process, this paper describes the relative importance of the processing, material properties, and transport parameters in Roll-to-Roll Nanoimprint Lithography (R2RNIL). In particular, the model is utilized to investigate the effect of web speed, fluid film thickness, viscosity, stress relaxation time, mold pattern geometry and size on mold filling. Based on a typical imprint roller configuration, kinematic analysis, and the conservation laws from classical mechanics, the behavior of the squeezing of a viscoelastic fluid film into a rigid mold cavity is described. Further, the effect of web speed, fluid film thickness and key rheological parameters, namely the Weissenberg and Deborah numbers, are discussed. These dimensionless numbers are typically employed to quantify viscoelastic effects in fluid flow problems. The effect of other scale-sensitive and geometric parameters, such as the capillary number and pattern width-to-height ratio, on the imprint process is also discussed. Numerical simulations are provided to corroborate the discussions and to quantify the relative importance of the parameters. 
    more » « less
  2. The lateral deformations of webs in roll-to-roll (R2R) process machines can affect the quality of the manufacturing process. Webs can enter a cylindrical roller normally if the forces required to sustain normal entry and do not exceed the available friction forces. Webs with simple non-uniform length variation across their width (camber) will steer toward the long side, affecting the steady state lateral deformation and hence registration. Most previous studies have focused on tests and modeling a cambered web span in a free span between two rollers. Often these studies assume some displacement and slope boundary conditions are known and seek the remaining condition(s) that would dictate the steady state lateral deformation of the cambered web in the free span. In many spans in a process machine there may be no known boundary conditions and no steady state deformation of the cambered web. The web may travel toward the long side continually from one web span until the next until a web guide attempts to return the web to an acceptable lateral location in the process machine. The simplest case of multiple span cambered web lateral behavior is that of a cambered web belt transiting two aligned rollers which is the focus of the current work. Dynamic simulation (Abaqus/Standard) has been used to better understand the response of cambered webs under tension that has been witnessed in tests. 
    more » « less
  3. Abstract

    Roll-to-roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based electronic products, as opposed to the sheet-to-sheet approach suited for low-volume work. However, one of the major challenges in R2R flexible electronics printing is achieving tight alignment tolerances, as specified by the device resolution (usually at micrometer level), for multi-layer printed electronics. The alignment of the printed patterns in different layers, known as registration, is critical to product quality. Registration errors are essentially accumulated positional or dimensional deviations caused by un-desired variations in web tensions and web speeds. Conventional registration control methods rely on model-based feedback controllers, such as PID control, to regulate the web tension and the web speed. However, those methods can not guarantee that the registration error always converges to zero due to lagging problems. In this paper, we propose a Spatial-Terminal Iterative Learning Control (STILC) method combined with PID control to enable the registration error to converge to zero iteratively, which achieves unprecedented control in the creation, integration and manipulation of multi-layer microstructures in R2R processes. We simulate the registration error generation and accumulation caused by axis mismatch between roller and motor that commonly exists in R2R systems. We show that the STILC-PID hybrid control method can eliminate the registration error completely after a reasonable number of iterations. We also compare the performances of STILC with a constant-value basis and a cosine-form basis. The results show that the control model with a cosine-form basis provides a faster convergence speed for R2R registration error elimination.

     
    more » « less
  4. Roll-to-roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based electronic products, as opposed to the sheet-to-sheet approach suited for low-volume work. However, one of the major challenges in R2R flexible electronics printing is achieving tight alignment tolerances, as specified by the device resolution (usually at micrometer level), for multi-layer printed electronics. The alignment of the printed patterns in different layers, known as registration, is critical to product quality. Registration errors are essentially accumulated positional or dimensional deviations caused by un-desired variations in web tensions and web speeds. Conventional registration control methods rely on model-based feedback controllers, such as PID control, to regulate the web tension and the web speed. However, those methods can not guarantee that the registration error always converges to zero due to lagging problems. In this paper, we propose a Spatial-Terminal Iterative Learning Control (STILC) method combined with PID control to enable the registration error to converge to zero iteratively, which achieves unprecedented control in the creation, integration and manipulation of multi-layer microstructures in R2R processes. We simulate the registration error generation and accumulation caused by axis mismatch between roller and motor that commonly exists in R2R systems. We show that the STILC-PID hybrid control method can eliminate the registration error completely after a reasonable number of iterations. We also compare the performances of STILC with a constant-value basis and a cosine-form basis. The results show that the control model with a cosine-form basis provides a faster convergence speed for R2R registration error elimination. 
    more » « less
  5. The length of web in a wound roll is one mark of roll quality. The available web length in a roll is a concern for many who process webs and those who convert webs. There are algorithms that estimate the length of web and layers in a wound roll based on simple geometry and inputs of inside and outside radius and web thickness. If webs were infinitely stiff in the machine and out-of-plane directions such calculations could be accurate but this is not the case. Webs deform as the result of winder operating conditions such as winding tension and the contact pressures and stresses due to winding. Length calculations based on geometry will err as a result of web deformation in the length and radial directions. Webs are generally subject to tension during transport through process machines, the apparent deformed web length will vary with transport tension. The mission of this paper is to describe means by which the available deformed web length and the number of layers in a wound roll can be accurately predicted. The accuracy of the predictions will be verified by winding trials in the laboratory. The winding trials will demonstrate the levels of accuracy that can be realized on laboratory and production machines. 
    more » « less