skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Mechanics of Cambered Web Belts on Aligned Rollers
The lateral deformations of webs in roll-to-roll (R2R) process machines can affect the quality of the manufacturing process. Webs can enter a cylindrical roller normally if the forces required to sustain normal entry and do not exceed the available friction forces. Webs with simple non-uniform length variation across their width (camber) will steer toward the long side, affecting the steady state lateral deformation and hence registration. Most previous studies have focused on tests and modeling a cambered web span in a free span between two rollers. Often these studies assume some displacement and slope boundary conditions are known and seek the remaining condition(s) that would dictate the steady state lateral deformation of the cambered web in the free span. In many spans in a process machine there may be no known boundary conditions and no steady state deformation of the cambered web. The web may travel toward the long side continually from one web span until the next until a web guide attempts to return the web to an acceptable lateral location in the process machine. The simplest case of multiple span cambered web lateral behavior is that of a cambered web belt transiting two aligned rollers which is the focus of the current work. Dynamic simulation (Abaqus/Standard) has been used to better understand the response of cambered webs under tension that has been witnessed in tests.  more » « less
Award ID(s):
1635636
NSF-PAR ID:
10110752
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Fifteenth International Conference on Web Handling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The length of web in a wound roll is one mark of roll quality. The available web length in a roll is a concern for many who process webs and those who convert webs. There are algorithms that estimate the length of web and layers in a wound roll based on simple geometry and inputs of inside and outside radius and web thickness. If webs were infinitely stiff in the machine and out-of-plane directions such calculations could be accurate but this is not the case. Webs deform as the result of winder operating conditions such as winding tension and the contact pressures and stresses due to winding. Length calculations based on geometry will err as a result of web deformation in the length and radial directions. Webs are generally subject to tension during transport through process machines, the apparent deformed web length will vary with transport tension. The mission of this paper is to describe means by which the available deformed web length and the number of layers in a wound roll can be accurately predicted. The accuracy of the predictions will be verified by winding trials in the laboratory. The winding trials will demonstrate the levels of accuracy that can be realized on laboratory and production machines. 
    more » « less
  2. In this paper we derive spatially dependent transfer functions for web span lateral dynamics which provide web lateral position and slope as outputs at any location in the span; the inputs are guide roller displacement, web lateral position disturbances from upstream spans, and disturbances due to misaligned rollers. This is in sharp contrast to the existing approach where only web lateral position response is available on the rollers. We describe the inherent drawbacks of the existing approach and how the new approach overcomes them. The new approach relies on taking the 1D Laplace transform with respect to the temporal variable of both the web governing equation and the boundary conditions. One can also obtain the web slope at any location within the web span with the proposed approach. A general span lateral transfer function, which is an explicit function of the spatial position along the span, is obtained first followed by its application to different intermediate guide configurations. 
    more » « less
  3. Nano-Impression Lithography (NIL) has been demonstrated to produce nano features on webs that have value to society. Such demonstrations have largely been the result of NIL processes that involve the discrete stamping of a mold with nano-impressions into a thermoplastic web or a web coated with resin that is cured during the imprint process. To scale NIL to large area products which can be produced economically requires the imprinting to occur on roll-to-roll (R2R) process machines. Nip mechanics is a topic which has been explored in relation to drive nips and winding nips in R2R machines. Nip rollers will be needed to imprint webs at production speeds to ensure mold filling on an imprint roller. The objective of this paper is to demonstrate while the nip roller is required that it can also induce imperfections in the imprinted nano-features. Successful imprinting will require nip loads sufficient to fill the imprint mold and then addressing the nip mechanics which can induce shear and slip that could destroy the nano-features. The objective is to demonstrate through the study of nip mechanics that this shear and slip can be inhibited through the selection of nip materials and tension control of the web entering and exiting the nipped imprint roller. 
    more » « less
  4. Utility trucks with boom equipment function on environmentally sensitive areas and severe terrains where off-road conditions may cause significant damage to the trucks’ mobility and their safe operation. Indeed, considerable variations of landscape elevation and dynamic changes of terrain properties lead to extensive differences in the wheel normal reactions, drastic fluctuations of the rolling resistance at each tire, and finally, substantial changes in the total resistance to motion, which includes both the tire rolling resistance and the resistance due to the truck gravity component. Additionally, lateral forces caused by truck inclinations can lead to instability in motion, too. As a result, a utility truck can become immobilized in either longitudinal or lateral direction of movement because of one or the combination of the following events – loss of longitudinal mobility due to extensive tire slippage at some/all wheels, loss of lateral mobility due to tire side skid or rollover of the truck. To eliminate the above-listed causes that can lead to the utility truck immobilization, this study suggests a novel approach to managing the input/output factors that influence both longitudinal and lateral forces of the utility truck. In fact, the 3D morphing of the boom equipment is proposed as the input factor for managing the wheel normal reactions as the outputs. Ultimately, a changeable positioning of the boom equipment relative to the truck frame results in variable wheel normal reactions, which are the main contributors to the normal tire deformation and soil compaction, and thus, to the rolling resistance of each and all tires. This paper presents and discusses the method and results of computational simulations of the F450-based utility truck with boom equipment on medium mineral soil. The normal reaction at each wheel is evaluated under which the boom equipment morphs safely without causing roll over of the truck and, consequently, the total resistance to the motion force is determined. Modeling and simulation of the truck were conducted with the use of terramechanics-based tire-terrain models. This research study of the rolling resistance contributes to a research project on morphing utility truck, dynamics in severe terrain conditions. Keywords: Utility Truck, Morphing, Terrain Mobility 
    more » « less
  5. Webs are subjected to large out-of-plane deformations when transiting rollers in process machinery. Webs are often treated as membranes in analysis but become subject to significant bending strains when transiting rollers. Anticlastic bending of thick plates is a known phenomenon. The anticlastic effect is often ignored for webs which are thin. The objective of this paper is to demonstrate that the large bending deformations webs are subjected to on rollers influence the internal membrane stresses and deformations in the web. The results will show that the concept of normal entry of a web to a roller has complexity that has previously not been considered. It will be demonstrated that a cross direction tensile membrane stress results from the large deformations that acts to stabilize the web and inhibit wrinkle formation. 
    more » « less