skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Normalized spectral map synchronization
The algorithmic advancement of synchronizing maps is important in order to solve a wide range of practice problems with possible large-scale dataset. In this paper, we provide theoretical justifications for spectral techniques for the map synchronization problem, i.e., it takes as input a collection of objects and noisy maps estimated between pairs of objects, and outputs clean maps between all pairs of objects. We show that a simple normalized spectral method that projects the blocks of the top eigenvectors of a data matrix to the map space leads to surprisingly good results. As the noise is modelled naturally as random permutation matrix, this algorithm NormSpecSync leads to competing theoretical guarantees as state-of-the-art convex optimization techniques, yet it is much more efficient. We demonstrate the usefulness of our algorithm in a couple of applications, where it is optimal in both complexity and exactness among existing methods.  more » « less
Award ID(s):
1302662
PAR ID:
10025960
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 29 (NIPS 2016)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    State aggregation is a popular model reduction method rooted in optimal control. It reduces the complexity of engineering systems by mapping the system’s states into a small number of meta-states. The choice of aggregation map often depends on the data analysts’ knowledge and is largely ad hoc. In this paper, we propose a tractable algorithm that estimates the probabilistic aggregation map from the system’s trajectory. We adopt a soft-aggregation model, where each meta-state has a signature raw state, called an anchor state. This model includes several common state aggregation models as special cases. Our proposed method is a simple two- step algorithm: The first step is spectral decomposition of empirical transition matrix, and the second step conducts a linear transformation of singular vectors to find their approximate convex hull. It outputs the aggregation distributions and disaggregation distributions for each meta-state in explicit forms, which are not obtainable by classical spectral methods. On the theoretical side, we prove sharp error bounds for estimating the aggregation and disaggregation distributions and for identifying anchor states. The analysis relies on a new entry-wise deviation bound for singular vectors of the empirical transition matrix of a Markov process, which is of independent interest and cannot be deduced from existing literature. The application of our method to Manhattan traffic data successfully generates a data-driven state aggregation map with nice interpretations. 
    more » « less
  2. Abstract In this article, we propose an algorithm for aligning three-dimensional objects when represented as density maps, motivated by applications in cryogenic electron microscopy. The algorithm is based on minimizing the 1-Wasserstein distance between the density maps after a rigid transformation. The induced loss function enjoys a more benign landscape than its Euclidean counterpart and Bayesian optimization is employed for computation. Numerical experiments show improved accuracy and efficiency over existing algorithms on the alignment of real protein molecules. In the context of aligning heterogeneous pairs, we illustrate a potential need for new distance functions. 
    more » « less
  3. Many modern simultaneous localization and mapping (SLAM) techniques rely on sparse landmark-based maps due to their real-time performance. However, these techniques frequently assert that these landmarks are fixed in position over time, known as the static-world assumption. This is rarely, if ever, the case in most real-world environments. Even worse, over long deployments, robots are bound to observe traditionally static landmarks change, for example when an autonomous vehicle encounters a construction zone. This work addresses this challenge, accounting for changes in complex three-dimensional environments with the creation of a probabilistic filter that operates on the features that give rise to landmarks. To accomplish this, landmarks are clustered into cliques and a filter is developed to estimate their persistence jointly among observations of the landmarks in a clique. This filter uses estimated spatial-temporal priors of geometric objects, allowing for dynamic and semi-static objects to be removed from a formally static map. The proposed algorithm is validated in a 3D simulated environment. 
    more » « less
  4. Abstract We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices. 
    more » « less
  5. Bellomo, N.; Carrillo, J.A.; Tadmor, E. (Ed.)
    In this work, we build a unifying framework to interpolate between density-driven and geometry-based algorithms for data clustering and, specifically, to connect the mean shift algorithm with spectral clustering at discrete and continuum levels. We seek this connection through the introduction of Fokker–Planck equations on data graphs. Besides introducing new forms of mean shift algorithms on graphs, we provide new theoretical insights on the behavior of the family of diffusion maps in the large sample limit as well as provide new connections between diffusion maps and mean shift dynamics on a fixed graph. Several numerical examples illustrate our theoretical findings and highlight the benefits of interpolating density-driven and geometry-based clustering algorithms. 
    more » « less