(1) Background: A simplistic understanding of the central dogma falls short in correlating the number of genes in the genome to the number of proteins in the proteome. Post-transcriptional alternative splicing contributes to the complexity of the proteome and is critical in understanding gene expression. mRNA-sequencing (RNA-seq) has been widely used to study the transcriptome and provides opportunity to detect alternative splicing events among different biological conditions. Despite the popularity of studying transcriptome variants with RNA-seq, few efficient and user-friendly bioinformatics tools have been developed for the genome-wide detection and visualization of alternative splicing events. (2) Results: We propose AS-Quant, (Alternative Splicing Quantitation), a robust program to identify alternative splicing events from RNA-seq data. We then extended AS-Quant to visualize the splicing events with short-read coverage plots along with complete gene annotation. The tool works in three major steps: (i) calculate the read coverage of the potential spliced exons and the corresponding gene; (ii) categorize the events into five different categories according to the annotation, and assess the significance of the events between two biological conditions; (iii) generate the short reads coverage plot for user specified splicing events. Our extensive experiments on simulated and real datasets demonstrate that AS-Quant outperforms the other three widely used baselines, SUPPA2, rMATS, and diffSplice for detecting alternative splicing events. Moreover, the significant alternative splicing events identified by AS-Quant between two biological contexts were validated by RT-PCR experiment. (3) Availability: AS-Quant is implemented in Python 3.0. Source code and a comprehensive user’s manual are freely available online.
more »
« less
SDEAP: a splice graph based differential transcript expression analysis tool for population data
Motivation: Differential transcript expression (DTE) analysis without predefined conditions is critical to biological studies. For example, it can be used to discover biomarkers to classify cancer samples into previously unknown subtypes such that better diagnosis and therapy methods can be developed for the subtypes. Although several DTE tools for population data, i.e. data without known biological conditions, have been published, these tools either assume binary conditions in the input population or require the number of conditions as a part of the input. Fixing the number of conditions to binary is unrealistic and may distort the results of a DTE analysis. Estimating the correct number of conditions in a population could also be challenging for a routine user. Moreover, the existing tools only provide differential usages of exons, which may be insufficient to interpret the patterns of alternative splicing across samples and restrains the applications of the tools from many biology studies. Results: We propose a novel DTE analysis algorithm, called SDEAP, that estimates the number of conditions directly from the input samples using a Dirichlet mixture model and discovers alternative splicing events using a new graph modular decomposition algorithm. By taking advantage of the above technical improvement, SDEAP was able to outperform the other DTE analysis methods in our extensive experiments on simulated data and real data with qPCR validation. The prediction of SDEAP also allowed us to classify the samples of cancer subtypes and cell-cycle phases more accurately.
more »
« less
- PAR ID:
- 10025985
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 32
- Issue:
- 23
- ISSN:
- 1367-4803
- Page Range / eLocation ID:
- 3593-3602
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Known genes in the breast cancer study literature could not be confirmed whether they are vital to breast cancer formations due to lack of convincing accuracy, although they may be biologically directly related to breast cancer based on present biological knowledge. It is hoped vital genes can be identified with the highest possible accuracy, for example, 100% accuracy and convincing causal patterns beyond what has been known in breast cancer. One hope is that finding gene-gene interaction signatures and functional effects may solve the puzzle. This research uses a recently developed competing linear factor analysis method in differentially expressed gene detection to advance the study of breast cancer formation. Surprisingly, 3 genes are detected to be differentially expressed in TNBC and non-TNBC (Her2, Luminal A, Luminal B) samples with 100% sensitivity and 100% specificity in 1 study of triple-negative breast cancers (TNBC, with 54 675 genes and 265 samples). These 3 genes show a clear signature pattern of how TNBC patients can be grouped. For another TNBC study (with 54 673 genes and 66 samples), 4 genes bring the same accuracy of 100% sensitivity and 100% specificity. Four genes are found to have the same accuracy of 100% sensitivity and 100% specificity in 1 breast cancer study (with 54 675 genes and 121 samples), and the same 4 genes bring an accuracy of 100% sensitivity and 96.5% specificity in the fourth breast cancer study (with 60 483 genes and 1217 samples). These results show the 4-gene-based classifiers are robust and accurate. The detected genes naturally classify patients into subtypes, for example, 7 subtypes. These findings demonstrate the clearest gene-gene interaction patterns and functional effects with the smallest numbers of genes and the highest accuracy compared with findings reported in the literature. The 4 genes are considered to be essential for breast cancer studies and practice. They can provide focused, targeted researches and precision medicine for each subtype of breast cancer. New breast cancer disease types may be detected using the classified subtypes, and hence new effective therapies can be developed.more » « less
-
Abstract The effect of DNA methylation on the regulation of gene expression has been extensively discussed in the literature. However, the potential association between DNA methylation and alternative splicing is not understood well. In this study, we integrated multiple omics data types from The Cancer Genome Atlas (TCGA) and systematically examined the relationship between DNA methylation and alternative splicing. Using the methylation data and exon expression data, we identified many CpG sites significantly associated with exon expression in various types of cancers. We further observed that the direction and strength of significant CpG-exon correlation tended to be consistent across different cancer contexts, indicating that some CpG-exon correlation patterns reflect fundamental biological mechanisms that transcend tissue- and cancer- types. We also discovered that CpG sites correlated with exon expressions were more likely to be associated with patient survival outcomes compared to CpG sites that did not correlate with exon expressions. Furthermore, we found that CpG sites were more strongly correlated with exon expression than expression of isoforms harboring the corresponding exons. This observation suggests that a major effect of CpG methylation on alternative splicing may be related to the inclusion or exclusion of exons, which subsequently impacts the relative usage of various isoforms. Overall, our study revealed correlation patterns between DNA methylation and alternative splicing, which provides new insights into the role of methylation in the transcriptional process.more » « less
-
The rapid growth of diverse -omics datasets has made multiomics data integration crucial in cancer research. This study adapts the expectation–maximization routine for the joint latent variable modeling of multiomics patient profiles. By combining this approach with traditional biological feature selection methods, this study optimizes latent distribution, enabling efficient patient clustering from well-studied cancer types with reduced computational expense. The proposed optimization subroutines enhance survival analysis and improve runtime performance. This article presents a framework for distinguishing cancer subtypes and identifying potential biomarkers for breast cancer. Key insights into individual subtype expression and function were obtained through differentially expressed gene analysis and pathway enrichment for BRCA patients. The analysis compared 302 tumor samples to 113 normal samples across 60,660 genes. The highly upregulated gene COL10A1, promoting breast cancer progression and poor prognosis, and the consistently downregulated gene CDG300LG, linked to brain metastatic cancer, were identified. Pathway enrichment analysis revealed similarities in cellular matrix organization pathways across subtypes, with notable differences in functions like cell proliferation regulation and endocytosis by host cells. GO Semantic Similarity analysis quantified gene relationships in each subtype, identifying potential biomarkers like MATN2, similar to COL10A1. These insights suggest deeper relationships within clusters and highlight personalized treatment potential based on subtypes.more » « less
-
In The Cancer Genome Atlas (TCGA) data set, there are many interesting nonlinear dependencies between pairs of genes that reveal important relationships and subtypes of cancer. Such genomic data analysis requires a rapid, powerful and interpretable detection process, especially in a high-dimensional environment. We study the nonlinear patterns among the expression of pairs of genes from TCGA using a powerful tool called Binary Expansion Testing. We find many nonlinear patterns, some of which are driven by known cancer subtypes, some of which are novel.more » « less
An official website of the United States government

