Uveal melanoma (UM) is a comparatively rare cancer but requires serious consideration since patients with developing metastatic UM survive only for about 6–12 months. Fortunately, increasingly large multi-omics databases allow us to further understand cancer initiation and development. Moreover, previous studies have observed that associations between copy number aberrations (CNA) or methylation (MET) versus messenger RNA (mRNA) expression have affected these processes. From that, we decide to explore the effect of these associations on a case study of UM. Also, the current subtypes of UM display its weak association with biological phenotypes and its lack of therapy suggestions. Therefore, the re-identification of molecular subtypes is a pressing need. In this study, we recruit three omics profiles, including CNA, MET, and mRNA, in a UM cohort from The Cancer Genome Atlas (TCGA). Firstly, we identify two sets of genes, CNAexp and METexp, whose CNA and MET significantly correlated with their corresponding mRNA, respectively. Then, single and integrative analyses of the three data types are performed using the PINSPlus tool. As a result, we discover two novel integrative subgroups, IntSub1 and IntSub2, which could be a useful alternative classification for UM patients in the future. To further explore molecular events behind each subgroup, we identify their subgroup-specific genes computationally. Accordingly, the highest expressed genes among IntSub1-specific genes are mostly enriched with immune-related processes. On the other hand, IntSub2-specific genes are highly associated with cellular cation homeostasis, which responds effectively to chemotherapy using ion channel inhibitor drugs. In addition, we detect that the two integrative subgroups show different age-related risks and survival rates. These discoveries can influence the frequency of metastatic surveillance and support medical practitioners to choose an appropriate treatment regime.
more »
« less
Pairwise nonlinear dependence analysis of genomic data
In The Cancer Genome Atlas (TCGA) data set, there are many interesting nonlinear dependencies between pairs of genes that reveal important relationships and subtypes of cancer. Such genomic data analysis requires a rapid, powerful and interpretable detection process, especially in a high-dimensional environment. We study the nonlinear patterns among the expression of pairs of genes from TCGA using a powerful tool called Binary Expansion Testing. We find many nonlinear patterns, some of which are driven by known cancer subtypes, some of which are novel.
more »
« less
- PAR ID:
- 10516356
- Publisher / Repository:
- PubMed Central® (PMC)
- Date Published:
- Journal Name:
- The Annals of Applied Statistics
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 1932-6157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biomarkers predictive of drug-specific outcomes are important tools for personalized medicine. In this study, we present an integrative analysis to identify miRNAs that are predictive of drug-specific survival outcome in cancer. Using the clinical data from TCGA, we defined subsets of cancer patients who suffered from the same cancer and received the same drug treatment, which we call cancer-drug groups. We then used the miRNA expression data in TCGA to evaluate each miRNA’s ability to predict the survival outcome of patients in each cancer-drug group. As a result, the identified miRNAs are predictive of survival outcomes in a cancer-specific and drug-specific manner. Notably, most of the drug-specific miRNA survival markers and their target genes showed consistency in terms of correlations in their expression and their correlations with survival. Some of the identified miRNAs were supported by published literature in contexts of various cancers. We explored several additional breast cancer datasets that provided miRNA expression and survival data, and showed that our drug-specific miRNA survival markers for breast cancer were able to effectively stratify the prognosis of patients in those additional datasets. Together, this analysis revealed drug-specific miRNA markers for cancer survival, which can be promising tools toward personalized medicine.more » « less
-
Wei, Yanjie; Li, Min; Skums, Pavel; Cai, Zhipeng (Ed.)Novel discoveries of biomarkers predictive of drug-specific responses not only play a pivotal role in revealing the drug mechanisms in cancers, but are also critical to personalized medicine. In this study, we identified drug-specific biomarkers by integrating protein expression data, drug treatment data and survival outcome of 7076 patients from The Cancer Genome Atlas (TCGA). We first defined cancer-drug groups, where each cancer-drug group contains patients with the same cancer and treated with the same drug. For each protein, we stratified the patients in each cancer-drug group by high or low expression of the protein, and applied log-rank test to examine whether the stratified patients show significant survival difference. We examined 336 proteins in 98 cancer-drug groups and identified 65 protein-cancer-drug combinations involving 55 unique proteins, where the protein expression levels are predictive of drug-specific survival outcomes. Some of the identified proteins were supported by published literature. Using the gene expression data from TCGA, we found the mRNA expression of ∼11% of the drug-specific proteins also showed significant correlation with drug-specific survival, and most of these drug-specific proteins and their corresponding genes are strongly correlated.more » « less
-
Abstract BackgroundThe recent development of high-throughput sequencing has created a large collection of multi-omics data, which enables researchers to better investigate cancer molecular profiles and cancer taxonomy based on molecular subtypes. Integrating multi-omics data has been proven to be effective for building more precise classification models. Most current multi-omics integrative models use either an early fusion in the form of concatenation or late fusion with a separate feature extractor for each omic, which are mainly based on deep neural networks. Due to the nature of biological systems, graphs are a better structural representation of bio-medical data. Although few graph neural network (GNN) based multi-omics integrative methods have been proposed, they suffer from three common disadvantages. One is most of them use only one type of connection, either inter-omics or intra-omic connection; second, they only consider one kind of GNN layer, either graph convolution network (GCN) or graph attention network (GAT); and third, most of these methods have not been tested on a more complex classification task, such as cancer molecular subtypes. ResultsIn this study, we propose a novel end-to-end multi-omics GNN framework for accurate and robust cancer subtype classification. The proposed model utilizes multi-omics data in the form of heterogeneous multi-layer graphs, which combine both inter-omics and intra-omic connections from established biological knowledge. The proposed model incorporates learned graph features and global genome features for accurate classification. We tested the proposed model on the Cancer Genome Atlas (TCGA) Pan-cancer dataset and TCGA breast invasive carcinoma (BRCA) dataset for molecular subtype and cancer subtype classification, respectively. The proposed model shows superior performance compared to four current state-of-the-art baseline models in terms of accuracy, F1 score, precision, and recall. The comparative analysis of GAT-based models and GCN-based models reveals that GAT-based models are preferred for smaller graphs with less information and GCN-based models are preferred for larger graphs with extra information.more » « less
-
Cancer is an umbrella term that includes a range of disorders, from those that are fast-growing and lethal to indolent lesions with low or delayed potential for progression to death. The treatment options, as well as treatment success, are highly dependent on the correct subtyping of individual patients. With the advancement of high-throughput platforms, we have the opportunity to differentiate among cancer subtypes from a holistic perspective that takes into consideration phenomena at different molecular levels (mRNA, methylation, etc.). This demands powerful integrative methods to leverage large multi-omics datasets for a better subtyping. Here we introduce Subtyping Multi-omics using a Randomized Transformation (SMRT), a new method for multi-omics integration and cancer subtyping. SMRT offers the following advantages over existing approaches: (i) the scalable analysis pipeline allows researchers to integrate multi-omics data and analyze hundreds of thousands of samples in minutes, (ii) the ability to integrate data types with different numbers of patients, (iii) the ability to analyze un-matched data of different types, and (iv) the ability to offer users a convenient data analysis pipeline through a web application. We also improve the efficiency of our ensemble-based, perturbation clustering to support analysis on machines with memory constraints. In an extensive analysis, we compare SMRT with eight state-of-the-art subtyping methods using 37 TCGA and two METABRIC datasets comprising a total of almost 12,000 patient samples from 28 different types of cancer. We also performed a number of simulation studies. We demonstrate that SMRT outperforms other methods in identifying subtypes with significantly different survival profiles. In addition, SMRT is extremely fast, being able to analyze hundreds of thousands of samples in minutes. The web application is available at http://SMRT.tinnguyen-lab.com . The R package will be deposited to CRAN as part of our PINSPlus software suite.more » « less
An official website of the United States government

