skip to main content


Title: CO-Dark Star Formation and Black Hole Activity in 3C 368 at z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses
Award ID(s):
1614213
NSF-PAR ID:
10026042
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
836
Issue:
1
ISSN:
1538-4357
Page Range / eLocation ID:
123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The past decade has seen significant progress in understanding galaxy formation and evolution using large-scale cosmological simulations. While these simulations produce galaxies in overall good agreement with observations, they employ different sub-grid models for galaxies and supermassive black holes (BHs). We investigate the impact of the sub-grid models on the BH mass properties of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations, focusing on the MBH − M⋆ relation and the BH mass function. All simulations predict tight MBH − M⋆ relations, and struggle to produce BHs of $M_{\rm BH}\leqslant 10^{7.5}\, \rm M_{\odot }$ in galaxies of $M_{\star }\sim 10^{10.5}\!-\!10^{11.5}\, \rm M_{\odot }$. While the time evolution of the mean MBH − M⋆ relation is mild ($\rm \Delta M_{\rm BH}\leqslant 1\, dex$ for 0 $\leqslant z \leqslant$ 5) for all the simulations, its linearity (shape) and normalization varies from simulation to simulation. The strength of SN feedback has a large impact on the linearity and time evolution for $M_{\star }\leqslant 10^{10.5}\, \rm M_{\odot }$. We find that the low-mass end is a good discriminant of the simulation models, and highlights the need for new observational constraints. At the high-mass end, strong AGN feedback can suppress the time evolution of the relation normalization. Compared with observations of the local Universe, we find an excess of BHs with $M_{\rm BH}\geqslant 10^{9}\, \rm M_{\odot }$ in most of the simulations. The BH mass function is dominated by efficiently accreting BHs ($\log _{10}\, f_{\rm Edd}\geqslant -2$) at high redshifts, and transitions progressively from the high-mass to the low-mass end to be governed by inactive BHs. The transition time and the contribution of active BHs are different among the simulations, and can be used to evaluate models against observations. 
    more » « less
  2. ABSTRACT

    Supermassive black holes (SMBHs) merging in dwarf galaxies will be detectable by the Laser Interferometer Space Antenna (LISA) in the mid-2030s. Previous cosmological hydrodynamic simulations have shown the prediction of massive BHs merging in dwarf galaxies, but these simulations are limited by their resolution and cannot follow BH pairs all the way to coalescence. We calculate the delay time between BH pairing and merger based on the properties of the BHs and their host galaxies, and use these properties to calculate gravitational wave strains for eleven different binary BHs that merge inside dwarf galaxies from eight cosmological simulations. This delay time calculation accounts for dynamical friction due to gas and stars, loss-cone scattering, and hardening of the binary due to gravitational radiation. Out of the eleven BH mergers in the simulations, five BH pairs will merge within 0.8–8 Gyr of forming a close pair and could be observed by LISA, and the remaining six are unresolved due to resolution limitations of the simulation. As all five of the resolved close pairs merge within a Hubble time, we make the broad estimate that close SMBH pairs in dwarf galaxies will merge and be detectable by LISA, but this estimate depends on either the presence of gas during orbital decay or a solution to the dynamical buoyancy problem in cored potentials.

     
    more » « less
  3. ABSTRACT

    We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.

     
    more » « less
  4. We present bolometric luminosities, black hole masses, and Eddington ratios for 42 luminous quasars at z  ≳ 6 using high signal-to-noise ratio VLT/X-shooter spectra, acquired as part of the enlarged ESO Large Programme XQR-30 . In particular, we derived the bolometric luminosities from the rest-frame 3000 Å luminosities using a bolometric correction from the literature, as well as the black hole masses by modeling the spectral regions around the C  IV 1549 Å and the Mg  II 2798 Å emission lines, with scaling relations calibrated in the Local Universe. We find that the black hole masses derived from both emission lines are in the same range and the scatter of the measurements agrees with expectations from the scaling relations. The Mg  II -derived masses are between ∼(0.8−12) ×10 9   M ⊙ and the derived Eddington ratios are within ∼0.13−1.73, with a mean (median) of 0.84(0.72). By comparing the total sample of quasars at z  > 5.8, from this work and from the literature, to a bolometric luminosity distribution-matched sample at z  ∼ 1.5, we find that quasars at high redshift host slightly less massive black holes, which accrete slightly more rapidly than those at lower z , with a difference in the mean Eddington ratios of the two samples of ∼0.27. These findings are in agreement with the results of recent works in the literature. 
    more » « less