skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design Heuristics: A Conceptual Framework and Preliminary Method for Extraction
In designing complex systems, systems engineers strive to turn an existing situation into a situation that is most preferred. A rational decision maker would choose the alternative that maximizes the expected utility of the existing situation, but there are significant computational challenges to this approach. To overcome these challenges, most decision makers revert to heuristics. In this paper, we propose a conceptual framework for heuristics in design. A preliminary empirical study of designers for a robotics design problem was conducted to observe how participants apply heuristics. Participants having at least 2 years of experience designing robots were recruited to partake in a robotics design session in which participant were given 45 minutes to work on a design problem. A preliminary heuristics extraction method was developed, and the identified heuristics were studied to find trends within the overall set. These trends were the basis of a taxonomy of heuristics consisting of three initial classification methods: design phase, field of study, and action intent. The heuristics and classifications are presented, along with the challenges from extracting heuristics and recommendations for future work to further research design heuristics and to improve the method for extraction.  more » « less
Award ID(s):
1645316
PAR ID:
10026051
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study works toward addressing a knowledge gap in understanding how heuristics are developed, retrieved, employed, and modified by designers. Having a better awareness of one’s own set of heuristics can be beneficial for relaying to other team members, improving a team’s training processes, and aiding others on their path to design expertise. The ability to understand and justify the use of a heuristic should lead to more effective decision-making in systems design. To do this, the heuristics and their characteristics must be extracted using a repeatable scientific research methodology. This study describes a unique extraction and characterization process compared to prior literature. It includes some of the first work towards documenting heuristics for both designers and operators in a hybrid manufacturing setting. Eight participants performed a series of two design journals, two interviews, and one survey. Heuristics were extracted and refined between each method and then verified by participants in the survey. The surveys produced novel statistically significant findings in regard to heuristic characterizations, impacting how participants view how often a heuristic is used, the reliability of the heuristic, and the evolution of the heuristic. Lastly, an alternate perspective of heuristics as an error management bias is highlighted and discussed. 
    more » « less
  2. In September 2019, the fourth and final workshop on the Future of Mechatronics and Robotics Education (FoMRE) was held at a Lawrence Technological University in Southfield, MI. This workshop was organized by faculty at several universities with financial support from industry partners and the National Science Foundation. The purpose of the workshops was to create a cohesive effort among mechatronics and robotics courses, minors and degree programs. Mechatronics and Robotics Engineering (MRE) is an integration of mechanics, controls, electronics, and software, which provides a unique opportunity for engineering students to function on multidisciplinary teams. Due to its multidisciplinary nature, it attracts diverse and innovative students, and graduates better-prepared professional engineers. In this fast growing field, there is a great need to standardize educational material and make MRE education more widely available and easier to adopt. This can only be accomplished if the community comes together to speak with one clear voice about not only the benefits, but also the best ways to teach it. These efforts would also aid in establishing more of these degree programs and integrating minors or majors into existing computer science, mechanical engineering, or electrical engineering departments. The final workshop was attended by approximately 50 practitioners from industry and academia. Participants identified many practical skills required for students to succeed in an MRE curriculum and as practicing engineers after graduation. These skills were then organized into the following categories: professional, independent learning, controller design, numerical simulation and analysis, electronics, software development, and system design. For example, professional skills include technical reports, presentations, and documentation. Independent learning includes reading data sheets, performing internet searches, doing a literature review, and having a maker mindset. Numerical simulation skills include understanding data, presenting data graphically, solving and simulating in software such as MATLAB, Simulink and Excel. Controller design involves selecting a controller, tuning a controller, designing to meet specifications, and understanding when the results are good enough. Electronics skills include selecting sensors, interfacing sensors, interfacing actuators, creating printed circuit boards, wiring on a breadboard, soldering, installing drivers, using integrated circuits, and using microcontrollers. Software development of embedded systems includes agile program design, state machines, analyzing and evaluating code results, commenting code, troubleshooting, debugging, AI and machine learning. Finally, system design includes prototyping, creating CAD models, design for manufacturing, breaking a system down into subsystems, integrating and interfacing subcomponents, having a multidisciplinary perspective, robustness, evaluating tradeoffs, testing, validation, and verification, failure, effect, and mode analysis. A survey was prepared and sent out to the participants from all four workshops as well as other robotics faculty, researchers and industry personnel in order to elicit a broader community response. Because one of the biggest challenges in mechatronics and robotics education is the absence of standardized curricula, textbooks, platforms, syllabi, assignments, and learning outcomes, this was a vital part of the process to achieve some level of consensus. This paper presents an introduction to MRE education, related work on existing programs, methods, results of the practical skills survey, and then draws conclusions based upon these results. It aims to create the foundation for standardizing the development of student skills in mechatronics and robotics curricula across institutions, disciplines, majors and minors. The survey was completed by 94 participants and it was clear that there is a consensus that the primary skills students should have upon completion of MRE courses or a program is a broader multidisciplinary systems-level perspective, an ability to problem solve, and an ability to design a system to meet specifications. 
    more » « less
  3. Abstract Additive manufacturing (AM) can produce designs in a manner that greatly differs from the methods used in the older, more familiar technologies of traditional manufacturing (TM). As an example, AM's layer-by-layer approach to manufacturing designs can lead to the production of intricate geometries and make use of multiple materials, made possible without added manufacturing cost and time due to AM's “free complexity.” Despite this contrasting method for manufacturing designs, designers often forgo the new design considerations for AM (AM design heuristics). Instead, they rely on their familiarity with the design considerations for TM (TM design heuristics) regardless of the intended manufacturing process. For designs that are intended to be manufactured using AM, this usage of TM design considerations is wasteful as it leads to unnecessary material usage, increased manufacturing time, and can result in designs that are poorly manufactured. To remedy this problem, there is a need to intervene early in the design process to help address any concerns regarding the use of AM design heuristics. This work aims to address this opportunity through a preliminary exploration of the design heuristics that students naturally leverage when creating designs in the context of TM and AM. In this study, 117 students in an upper-level engineering design course were given an open-ended design challenge and later tasked with self-evaluating their designs for their manufacturability with TM and AM. This evaluation of the students' designs was later repeated by relevant experts, who would identify the common design heuristics that students are most likely to use in their designs. Future studies will build on these findings by cementing early-stage design support tools that emphasize the significant heuristics found herein. For example, this work found that the design heuristic “incorporating complexity” was the most significant indicator of designs most suited for AM and should therefore be highly encouraged/emphasized when guiding designers in the use of AM. In doing so, it will be possible for early-stage design support tools to maximally improve designs that are intended to be manufactured for AM. 
    more » « less
  4. Robot design is a complex cognitive activity that requires the designer to iteratively navigate multiple engineering disciplines and the relations between them. In this paper, we explore how people approach robot design and how trends in design strategy vary with the level of expertise of the designer. Using our interactive Build-a-Bot software tool, we recruited 39 participants from the 2022 IEEE International Conference on Robotics and Automation. These participants varied in age from 19 to 56 years, and had between 0 and 17 years of robotics experience. We tracked the participants’ design decisions over the course of a 15 min. task of designing a ground robot to cross an uneven environment. Our results showed that participants engaged in iterative testing and modification of their designs, but unlike previous studies, there was no statistically significant effect of participant’s expertise on the frequency of iterations. We additionally found that, across levels of expertise, participants were vulnerable to design fixation, in which they latched onto an initial design concept and insufficiently adjusted the design, even when confronted with difficulties developing the concept into a satisfactory solution. The results raise interesting questions for how future engineers can avoid fixation and how design tools can assist in both efficient assessment and optimization of design workflow for complex design tasks. 
    more » « less
  5. This study offers insight into the processes of expert designers at the Jet Propulsion Laboratory (JPL) and how they make use of heuristics in the design process. A methodology for the extraction, classification, and characterization of heuristics is presented. Ten expert participants were interviewed to identify design heuristics used during early stage space mission design at JPL. In total, 101 heuristics were obtained, classified, and characterized. Through the use of post-interview surveys, participants characterized heuristics based on attributes including source/origin, applicability based on concept maturity, frequency of use, reliability, and tendency to evolve. These findings are presented, and statistically analyzed to show correlations between the participant perceptions of frequency of use, reliability, and evolution of a heuristic. Survey results and analysis aim to identify valid attributes for assessing the applicability and value of multiple heuristics for design practice in early space mission formulation. 
    more » « less