skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving
Object detection is a crucial task for autonomous driving. In addition to requiring high accuracy to ensure safety, object detection for autonomous driving also requires realtime inference speed to guarantee prompt vehicle control, as well as small model size and energy efficiency to enable embedded system deployment. In this work, we propose SqueezeDet, a fully convolutional neural network for object detection that aims to simultaneously satisfy all of the above constraints. In our network we use convolutional layers not only to extract feature maps, but also as the output layer to compute bounding boxes and class probabilities. The detection pipeline of our model only contains a single forward pass of a neural network, thus it is extremely fast. Our model is fully convolutional, which leads to small model size and better energy efficiency. Finally, our experiments show that our model is very accurate, achieving state-of-the-art accuracy on the KITTI [9] benchmark. The source code of SqueezeDet is open-source released1.  more » « less
Award ID(s):
1648576
PAR ID:
10026155
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
arXiv.org
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Object tracking has achieved great advances in the past few years and has been widely applied in vision-based application. Nowadays, deep convolutional neural network has taken an important role in object tracking tasks. However, its enormous model size and massive computation cost have became the main obstacle for deployment of such powerful algorithm in low power and resource limited embedded system, such as FPGA. Due to the popularization of the power-sensitive mobile platform, low power real-time tracking solution is strongly required. In order to address these challenges, we propose a low power and energy-efficient object tracking FPGA implementation based on a newly proposed binarized depthwise separable deep convolutional neural network. It can significantly reduce the model size and computation complexity simultaneously utilizing binarized (i.e., +1 and -1) depthwise separable convolution kernel and our proposed trainable threshold group binarization activation function. It can completely converts the dot product and accumulation based convolution operations into bit-wise XNOR and bit-count operations, while achieving state-of-the-art accuracy. Our proposed binarized depthwise separable model achieves ~57% Intersection over Union (IOU) on DJI object tracking dataset with only ~143.9Kb model parameter size. We then deploy our proposed model into the Xilinx PYNQ Z1 board with only 4.9Mb on-chip RAM. The experiment results show that our FPGA implementation achieves 11.1 frames per second for object tracking with only 2.61W. 
    more » « less
  2. Abstract In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators for real-time semantic segmentation tasks relevant for autonomous driving. Considering compressed versions of the ENet convolutional neural network architecture, we demonstrate a fully-on-chip deployment with a latency of 4.9 ms per image, using less than 30% of the available resources on a Xilinx ZCU102 evaluation board. The latency is reduced to 3 ms per image when increasing the batch size to ten, corresponding to the use case where the autonomous vehicle receives inputs from multiple cameras simultaneously. We show, through aggressive filter reduction and heterogeneous quantization-aware training, and an optimized implementation of convolutional layers, that the power consumption and resource utilization can be significantly reduced while maintaining accuracy on the Cityscapes dataset. 
    more » « less
  3. The presence of fog in the background can prevent small and distant objects from being detected, let alone tracked. Under safety-critical conditions, multi-object tracking models require faster tracking speed while maintaining high object-tracking accuracy. The original DeepSORT algorithm used YOLOv4 for the detection phase and a simple neural network for the deep appearance descriptor. Consequently, the feature map generated loses relevant details about the track being matched with a given detection in fog. Targets with a high degree of appearance similarity on the detection frame are more likely to be mismatched, resulting in identity switches or track failures in heavy fog. We propose an improved multi-object tracking model based on the DeepSORT algorithm to improve tracking accuracy and speed under foggy weather conditions. First, we employed our camera-radar fusion network (CR-YOLOnet) in the detection phase for faster and more accurate object detection. We proposed an appearance feature network to replace the basic convolutional neural network. We incorporated GhostNet to take the place of the traditional convolutional layers to generate more features and reduce computational complexities and costs. We adopted a segmentation module and fed the semantic labels of the corresponding input frame to add rich semantic information to the low-level appearance feature maps. Our proposed method outperformed YOLOv5 + DeepSORT with a 35.15% increase in multi-object tracking accuracy, a 32.65% increase in multi-object tracking precision, a speed increase by 37.56%, and identity switches decreased by 46.81%. 
    more » « less
  4. State-of-the-art lane detection methods use a variety of deep learning techniques for lane feature extraction and prediction, demonstrating better performance than conventional lane detectors. However, deep learning approaches are computationally demanding and often fail to meet real-time requirements of autonomous vehicles. This paper proposes a lane detection method using a light-weight convolutional neural network model as a feature extractor exploiting the potential of deep learning while meeting real-time needs. The developed model is trained with a dataset containing small image patches of dimension 16 × 64 pixels and a non-overlapping sliding window approach is employed to achieve fast inference. Then, the predictions are clustered and fitted with a polynomial to model the lane boundaries. The proposed method was tested on the KITTI and Caltech datasets and demonstrated an acceptable performance. We also integrated the detector into the localization and planning system of our autonomous vehicle and runs at 28 fps in a CPU on image resolution of 768 × 1024 meeting real-time requirements needed for self-driving cars. 
    more » « less
  5. With the wider adoption of edge computing services, intelligent edge devices, and high-speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers. However, data privacy becomes a major concern for vehicular edge computing, as sensitive sensor data from vehicles can be observed and used by edge servers. We aim to address the privacy problem by protecting both vehicles’ sensor data and the detection results. In this paper, we present vehicle–edge cooperative deep-learning networks with privacy protection for object-detection tasks, named vePOD for short. In vePOD, we leverage the additive secret sharing theory to develop secure functions for every layer in an object-detection convolutional neural network (CNN). A vehicle’s sensor data is split and encrypted into multiple secret shares, each of which is processed on an edge server by going through the secure layers of a detection network. The detection results can only be obtained by combining the partial results from the participating edge servers. We have developed proof-of-concept detection networks with secure layers: vePOD Faster R-CNN (two-stage detection) and vePOD YOLO (single-stage detection). Experimental results on public datasets show that vePOD does not degrade the accuracy of object detection and, most importantly, it protects data privacy for vehicles. The execution of a vePOD object-detection network with secure layers is orders of magnitude faster than the existing approaches for data privacy. To the best of our knowledge, this is the first work that targets privacy protection in object-detection tasks with vehicle–edge cooperative computing. 
    more » « less