skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Secure computation of linear functions over linear discrete multiple-access wiretap channels
In this paper, a joint source-channel coding approach is taken to the problem of securely computing a function of distributed sources over a multiple-access wiretap channel that is linear with respect to a finite field. It is shown that if the joint source distribution fulfills certain conditions and the function to be computed matches the linear structure of the channel, secrecy comes for free in the sense that the fundamental limit (i.e., the secrecy computation-capacity) is achieved without the need for stochastic encoding. Furthermore, the legitimate receiver does not need any advantage over the eavesdropper, which is in stark contrast to standard physical-layer security results.  more » « less
Award ID(s):
1647198 1435778
PAR ID:
10026242
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 50th Annual Asilomar Conference on Signals, Systems, and Computers
Page Range / eLocation ID:
1670 to 1674
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nested linear coding is a widely used technique in wireless communication systems for improving both security and reliability. Some parameters, such as the relative generalized Hamming weight and the relative dimension/length profile, can be used to characterize the performance of nested linear codes. In addition, the rank properties of generator and parity-check matrices can also precisely characterize their security performance. Despite this, finding optimal nested linear secrecy codes remains a challenge in the finite-blocklength regime, often requiring brute-force search methods. This paper investigates the properties of nested linear codes, introduces a new representation of the relative generalized Hamming weight, and proposes a novel method for finding the best nested linear secrecy code for the binary erasure wiretap channel by working from the worst nested linear secrecy code in the dual space. We demonstrate that our algorithm significantly outperforms the brute-force technique in terms of speed and efficiency. 
    more » « less
  2. We consider a distributed function computation problem in which parties observing noisy versions of a remote source facilitate the computation of a function of their observations at a fusion center through public communication. The distributed function computation is subject to constraints, including not only reliability and storage but also privacy and secrecy. Specifically, 1) the remote source should remain private from an eavesdropper and the fusion center, measured in terms of the information leaked about the remote source; 2) the function computed should remain secret from the eavesdropper, measured in terms of the information leaked about the arguments of the function, to ensure secrecy regardless of the exact function used. We derive the exact rate regions for lossless and lossy single-function computation and illustrate the lossy single-function computation rate region for an information bottleneck example, in which the optimal auxiliary random variables are characterized for binary input symmetric output channels. We extend the approach to lossless and lossy asynchronous multiple-function computations with joint secrecy and privacy constraints, in which case inner and outer bounds for the rate regions differing only in the Markov chain conditions imposed are characterized. 
    more » « less
  3. We identify a novel method of using feedback to provide enhanced information-theoretical security in the presence of an eavesdropper. This method begins with a fixed linear coset code providing both secrecy and error detection/correction, as has been described by several authors. The legitimate receiver then sends the syndrome information for the received codeword, and based on this feedback, the transmitter can provide further error correction information specifically tailored to assist only the legitimate receiver. We show that this method allows secure communication with the legitimate receiver even when the eavesdropper’s channel is superior to that of the legitimate receiver. 
    more » « less
  4. In this paper we consider the information-theoretic characterization of performance limits of a broad class of multiterminal communication problems with general continuousvalued sources and channels. In particular, we consider point-topoint source coding and channel coding with side information, distributed source coding with distortion constraints and function reconstruction problems (two-help-one). We develop an approach that uses fine quantization of the source and the channel variables followed by random coding with unstructured as well as structured (linear) code ensembles. This approach leads to lattice-like codes for general sources and channels. 
    more » « less
  5. In this paper, the K-user interference channel with secrecy constraints is considered with delayed channel state information at transmitters (CSIT). We propose a novel secure retrospective interference alignment scheme in which the transmitters carefully mix information symbols with artificial noises to ensure confidentiality. Achieving positive secure degrees of freedom (SDoF) is challenging due to the delayed nature of CSIT, and the distributed nature of the transmitters. Our scheme works over two phases: Phase one, in which each transmitter sends information symbols mixed with artificial noises, and repeats such transmission over multiple rounds. In the next phase, each transmitter uses the delayed CSIT of the previous phase and sends a function of the net interference and artificial noises (generated in previous phase), which is simultaneously useful for all receivers. These phases are designed to ensure the decodability of the desired messages while satisfying the secrecy constraints. We present our achievable scheme for three models, namely: (1) K-user interference channel with confidential messages (IC-CM), and we show that 1 2 ( K - 6 ) SDoF is achievable; (2) K-user interference channel with an external eavesdropper (IC-EE); and 3) K-user IC with confidential messages and an external eavesdropper (IC-CM-EE). We show that for the K-user IC-EE, 1 2 ( K - 3 ) SDoF is achievable, and for the K-user IC-CM-EE, 1 2 ( K - 6 ) is achievable. To the best of our knowledge, this is the first result on the K-user interference channel with secrecy constrained models and delayed CSIT that achieves an SDoF which scales with K , square-root of number of users. 
    more » « less