We study the problem of estimating the covariance matrix of a high-dimensional distribution when a small constant fraction of the samples can be arbitrarily corrupted. Recent work gave the first polynomial time algorithms for this problem with near-optimal error guarantees for several natural structured distributions. Our main contribution is to develop faster algorithms for this problem whose running time nearly matches that of computing the empirical covariance. Given N = Ω(d^2/\eps^2) samples from a d-dimensional Gaussian distribution, an \eps-fraction of which may be arbitrarily corrupted, our algorithm runs in time O(d^{3.26}/ poly(\eps)) and approximates the unknown covariance matrix to optimal error up to a logarithmic factor. Previous robust algorithms with comparable error guarantees all have runtimes Ω(d^{2ω}) when \eps = Ω(1), where ω is the exponent of matrix multiplication. We also provide evidence that improving the running time of our algorithm may require new algorithmic techniques.
more »
« less
Compression in a Distributed Setting
Motivated by an attempt to understand the formation and development of (human) language, we introduce a "distributed compression" problem. In our problem a sequence of pairs of players from a set of K players are chosen and tasked to communicate messages drawn from an unknown distribution Q. Arguably languages are created and evolve to compress frequently occurring messages, and we focus on this aspect. The only knowledge that players have about the distribution Q is from previously drawn samples, but these samples differ from player to player. The only common knowledge between the players is restricted to a common prior distribution P and some constant number of bits of information (such as a learning algorithm). Letting T_eps denote the number of iterations it would take for a typical player to obtain an eps-approximation to Q in total variation distance, we ask whether T_eps iterations suffice to compress the messages down roughly to their entropy and give a partial positive answer. We show that a natural uniform algorithm can compress the communication down to an average cost per message of O(H(Q) + log (D(P || Q) + O(1)) in $$\tilde{O}(T_eps)$$ iterations while allowing for O(eps)-error, where D(. || .) denotes the KL-divergence between distributions. For large divergences this compares favorably with the static algorithm that ignores all samples and compresses down to H(Q) + D(P || Q) bits, while not requiring (T_eps . K) iterations that it would take players to develop optimal but separate compressions for each pair of players. Along the way we introduce a "data-structural" view of the task of communicating with a natural language and show that our natural algorithm can also be implemented by an efficient data structure, whose storage is comparable to the storage requirements of Q and whose query complexity is comparable to the lengths of the message to be compressed. Our results give a plausible mathematical analogy to the mechanisms by which human languages get created and evolve, and in particular highlights the possibility of coordination towards a joint task (agreeing on a language) while engaging in distributed learning.
more »
« less
- PAR ID:
- 10026314
- Date Published:
- Journal Name:
- Innovations in Theoretical Computer Science (ITCS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human-Agent Cooperation in Games under Incomplete Information through Natural Language CommunicationDeveloping autonomous agents that can strategize and cooperate with humans under information asymmetry is challenging without effective communication in natural language. We introduce a shared-control game, where two players collectively control a token in alternating turns to achieve a common objective under incomplete information. We formulate a policy synthesis problem for an autonomous agent in this game with a human as the other player. To solve this problem, we propose a communication-based approach comprising a language module and a planning module. The language module translates natural language messages into and from a finite set of flags, a compact representation defined to capture player intents. The planning module leverages these flags to compute a policy using an asymmetric information-set Monte Carlo tree search with flag exchange algorithm we present. We evaluate the effectiveness of this approach in a testbed based on Gnomes at Night, a search-and-find maze board game. Results of human subject experiments show that communication narrows the information gap between players and enhances human-agent cooperation efficiency with fewer turns.more » « less
-
We present decidability results for a sub-class of “non-interactive” simulation problems, a well-studied class of problems in information theory. A non-interactive simulation problem is specified by two distributions P(x, y) and Q(u, v): The goal is to determine if two players, Alice and Bob, that observe sequences Xn and Y n respectively where {(Xi, Yi)}n i=1 are drawn i.i.d. from P(x, y) can generate pairs U and V respectively (without communicating with each other) with a joint distribution that is arbitrarily close in total variation to Q(u, v). Even when P and Q are extremely simple: e.g., P is uniform on the triples {(0, 0), (0, 1), (1, 0)} and Q is a “doubly symmetric binary source”, i.e., U and V are uniform ±1 variables with correlation say 0.49, it is open if P can simulate Q. In this work, we show that whenever P is a distribution on a finite domain and Q is a 2 × 2 distribution, then the non-interactive simulation problem is decidable: specifically, given δ > 0 the algorithm runs in time bounded by some function of P and δ and either gives a non-interactive simulation protocol that is δ-close to Q or asserts that no protocol gets O(δ)-close to Q. The main challenge to such a result is determining explicit (computable) convergence bounds on the number n of samples that need to be drawn from P(x, y) to get δ-close to Q. We invoke contemporary results from the analysis of Boolean functions such as the invariance principle and a regularity lemma to obtain such explicit bounds.more » « less
-
We consider the problem of performing linear regression over a stream of d-dimensional examples, and show that any algorithm that uses a subquadratic amount of memory exhibits a slower rate of convergence than can be achieved without memory constraints. Specifically, consider a sequence of labeled examples (a_1,b_1), (a_2,b_2)..., with a_i drawn independently from a d-dimensional isotropic Gaussian, and where b_i = + \eta_i, for a fixed x in R^d with ||x||= 1 and with independent noise \eta_i drawn uniformly from the interval [-2^{-d/5},2^{-d/5}]. We show that any algorithm with at most d^2/4 bits of memory requires at least \Omega(d \log \log \frac{1}{\epsilon}) samples to approximate x to \ell_2 error \epsilon with probability of success at least 2/3, for \epsilon sufficiently small as a function of d. In contrast, for such \epsilon, x can be recovered to error \epsilon with probability 1-o(1) with memory O\left(d^2 \log(1/\epsilon)\right) using d examples. This represents the first nontrivial lower bounds for regression with super-linear memory, and may open the door for strong memory/sample tradeoffs for continuous optimization.more » « less
-
Gilbert, Seth (Ed.)This paper concerns designing distributed algorithms that are singularly optimal, i.e., algorithms that are simultaneously time and message optimal, for the fundamental leader election problem in asynchronous networks. Kutten et al. (JACM 2015) presented a singularly near optimal randomized leader election algorithm for general synchronous networks that ran in O(D) time and used O(m log n) messages (where D, m, and n are the network’s diameter, number of edges and number of nodes, respectively) with high probability. Both bounds are near optimal (up to a logarithmic factor), since Ω(D) and Ω(m) are the respective lower bounds for time and messages for leader election even for synchronous networks and even for (Monte-Carlo) randomized algorithms. On the other hand, for general asynchronous networks, leader election algorithms are only known that are either time or message optimal, but not both. Kutten et al. (DISC 2020) presented a randomized asynchronous leader election algorithm that is singularly near optimal for complete networks, but left open the problem for general networks. This paper shows that singularly near optimal (up to polylogarithmic factors) bounds can be achieved for general asynchronous networks. We present a randomized singularly near optimal leader election algorithm that runs in O(D + log² n) time and O(m log² n) messages with high probability. Our result is the first known distributed leader election algorithm for asynchronous networks that is near optimal with respect to both time and message complexity and improves over a long line of results including the classical results of Gallager et al. (ACM TOPLAS, 1983), Peleg (JPDC, 1989), and Awerbuch (STOC, 89).more » « less
An official website of the United States government

