skip to main content


Title: Developing a Comprehensive Online Transfer Engineering Curriculum: Assessing the Effectiveness of an Online Engineering Graphics Course
Community colleges play an important role in educating future scientists and engineers, especially among students from groups that are traditionally underrepresented in science, technology, engineering, and mathematics. Community college transfer programs offer lower-division courses that students can take in preparation for transfer to a four-year program. For many small community colleges, however, developing a comprehensive transfer engineering program that prepares students to be competitive for transfer can be challenging due to a lack of facilities, resources, and local expertise. As a result, engineering education becomes inaccessible to many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to develop resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. This paper focuses on the development and testing of the teaching and learning resources for Engineering Graphics, which is a four-unit course (three units of lecture and one unit of lab) covering the principles of engineering drawings, computer-aided design (using both AutoCAD and SolidWorks), and the engineering design process. The paper also presents the results of the pilot implementation of the curriculum, as well as a comparison of the outcomes of the online course with those from a regular, face-to-face course. Student performance on labs and tests in the two parallel sections of the course are compared. Additionally student surveys and interviews, conducted in both the online and face-to-face course are used to document and compare students’ perceptions of their learning experience, the effectiveness of the course resources, their use of these resources, and their overall satisfaction with the course.  more » « less
Award ID(s):
1430789
NSF-PAR ID:
10026372
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2016 ASEE Annual Conference & Exposition
Volume:
2016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an increasing recognition among institutions of higher education of the important role that community colleges play in educating future engineers and scientists, especially students from traditionally underrepresented groups. Two-plus-two programs and articulation agreements between community colleges and four-year institutions are growing, allowing community college students to take their lower-division courses at local community colleges and then transfer to a university to complete their baccalaureate degrees. For many small community colleges, however, developing a comprehensive transfer engineering program that prepares students to be competitive for transfer can be challenging due to a lack of facilities, resources, and local expertise. As a result, many community college students transfer without completing the necessary courses for transfer, making timely completion of degrees difficult. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to develop resources and alternative teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. The biggest challenge in developing such strategies lies in designing and implementing courses that have lab components. This paper focuses on the development and testing of the teaching and learning resources for Engineering Graphics, which is a four-unit course (three units of lecture and one unit of lab) covering the principles of engineering drawings, computer-aided design (using both AutoCAD and SolidWorks), and the engineering design process. The paper also presents the results of the implementation of the curriculum, as well as a comparison of the outcomes of the online course with those from a regular, face-to-face course. Student performance on labs and tests in the two parallel sections of the course are compared. Additionally student surveys and interviews, conducted in both the online and face-to-face course are used to document and compare students’ perceptions of their learning experience, the effectiveness of the course resources, their use of these resources, and their overall satisfaction with the course. 
    more » « less
  2. Access to lower-division engineering courses in the community college substantially influences whether or not community college students pursue and successfully achieve an engineering degree. With about 60% of students from under-represented minority (URM) groups beginning their post-secondary education in the community colleges, providing this access is critical if the US is to diversify and expand its engineering workforce. Still many community college lack the faculty, equipment, or local expertise to offer a comprehensive transfer engineering program, thus compromising participation in engineering courses for underrepresented groups as well as for students residing in rural and remote areas, where distance is a key barrier to post-secondary enrollment. An additional obstacle to participation is the need for so many community college students to work, many in inflexible positions that compromise their ability to attend traditional face-to-face courses. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. This paper focuses on the development and testing of the teaching and learning resources for Introduction to Engineering, a three-unit course (two units of lecture and one unit of lab). The course has special significance as a gateway course for students who without the role models that their middle class peers so often have readily available enter college with very limited awareness of the exciting projects and fulfilling careers the engineering profession offers as well as with apprehension about their ability to succeed in a demanding STEM curriculum. To this end, the course covers academic success skills in engineering including mindset and metacognition, academic pathways, career awareness and job functions in the engineering profession, team building and communications, the engineering design process, and a broad range of fundamental and engaging topics and projects in engineering including electronics, basic test equipment, programming in MATLAB and Arduino, robotics, bridge design, and materials science. The paper presents the results of a pilot implementation of the teaching materials in a regular face-to-face course which will be used to inform subsequent on-line delivery. Additionally, student surveys and interviews are used to assess students’ perceptions of the effectiveness of the course resources, along with their sense of self-efficacy and identity as aspiring engineers. 
    more » « less
  3. Community college engineering transfer programs prepare a significant fraction of the graduates from university engineering programs, yet face challenges from a fragmented lower division engineering core curriculum, limited scheduling options for students, and sometimes marginal enrollment patterns. In addition, most small college programs are run by one permanent faculty, making it difficult to provide lower-division engineering courses with the breadth and frequency needed for effective and timely transfer preparation. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses. These courses can be delivered either completely online, or with limited face-to-face interactions. This paper presents the development and testing of the teaching and learning resources for an online Engineering Circuits Laboratory class, a one-unit laboratory course offered alongside the circuit theory course, which is already available in an online format. The class materials cover the use of basic instrumentation (DMM, Oscilloscope), analysis and interpretation of experimental data, circuit simulation, use of MATLAB to solve circuit equations in the real and complex domain, and exposure to the Arduino microcontroller. A systems approach to selected topics is also introduced as a way to contextualize student exposure to the material. The paper presents the results of the pilot and a second implementation of the curriculum, as well as a comparison of the outcomes of the online course with those from a regular, face-to-face course. Additionally, student surveys and interviews are used to determine student perceptions of the course resources, student use of these resources, and overall satisfaction with the course. 
    more » « less
  4. A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of the course resources were developed to allow online delivery if desired, the laboratory curriculum was designed to require some limited face-to-face interaction with traditional materials testing equipment. In addition to the resources themselves, the paper presents the results of the pilot implementation of the course during the Spring 2015 semester, taught using a flipped delivery format consisting of asynchronous remote viewing of lecture videos and face-to-face student-centered problem-solving and lab exercises. These same resources were then implemented in a flipped format by an instructor who had never previously taught the course, at a community college that did not have its own materials laboratory facilities. Site visits were arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. In both implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on assessments was compared with that of traditional lecture delivery of the courses in prior years. 
    more » « less
  5. The California Community College system plays an important role in providing affordable and accessible education to diverse student populations by allowing them to complete all of their lower-division course work and then transfer to a four-year institution to complete a bachelor’s degree. However, the increasing divergence of the lower-division requirements among different four-year institutions and among the different fields of engineering, coupled with decreasing enrollments and resources, has forced many community colleges to cancel low-enrollment classes and high-cost programs including those in engineering. To address this issue, four community colleges in the San Francisco Bay Area developed an innovative program titled Creating Alternative Learning Strategies for Transfer Engineering Programs (CALSTEP). Funded by the National Science Foundation through the Improving Undergraduate STEM Education (IUSE) program, CALSTEP aims to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. In addition to developing and implementing curriculum materials and resources for the core lower-division engineering courses, one of the main components of CALSTEP is disseminating the curriculum widely in California community college engineering programs. This is done through the Summer Engineering Teaching Institute, which is a two-day teaching workshop that introduces community college engineering faculty to the CALSTEP curriculum, and assists faculty in implementing the curriculum and developing alternative teaching and learning strategies to increase enrollment and improve teaching effectiveness. Results of curriculum development and the implementation of the Summer Engineering Teaching Institute will be highlighted in this paper, as well as future plans to maximize the impact of the program in increasing access to engineering education among thousands of community college engineering students and strengthening engineering transfer programs in the state. 
    more » « less