Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The California Community College system plays an important role in providing affordable and accessible education to diverse student populations by allowing them to complete all of their lower-division course work and then transfer to a four-year institution to complete a bachelor’s degree. However, the increasing divergence of the lower-division requirements among different four-year institutions and among the different fields of engineering, coupled with decreasing enrollments and resources, has forced many community colleges to cancel low-enrollment classes and high-cost programs including those in engineering. To address this issue, four community colleges in the San Francisco Bay Area developed an innovative program titled Creating Alternative Learning Strategies for Transfer Engineering Programs (CALSTEP). Funded by the National Science Foundation through the Improving Undergraduate STEM Education (IUSE) program, CALSTEP aims to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. In addition to developing and implementing curriculum materials and resources for the core lower-division engineering courses, one of the main components of CALSTEP is disseminating the curriculum widely in California community college engineering programs. This is done through the Summer Engineering Teaching Institute, which is a two-daymore »
-
Broadening participation in engineering among underrepresented minority students remains a big challenge for institutions of higher education. Since a large majority of underrepresented students attend community colleges, engineering transfer programs at these community colleges can play an important role in addressing this challenge. However, for most community college engineering programs, developing strategies and programs to increase the number and diversity of students successfully pursuing careers in engineering is especially challenging due to limited expertise, shrinking resources, and continuing budget crises. This paper is a description of how a small engineering transfer program at a Hispanic-Serving community college in California developed effective partnerships with high schools, other institutions of higher education, and industry partners in order to create opportunities for underrepresented community college students to excel in engineering. Developed through these partnerships are programs for high school students, current community college students, and community college engineering faculty. Programs for high school students include a) the Summer Engineering Institute – a two-week residential summer camp for sophomore and junior high school students, and b) the STEM Institute – a three-week program for high school freshmen to explore STEM fields. Academic and support programs for college students include: a) Math Jam – amore »
-
There is an increasing recognition among institutions of higher education of the important role that community colleges play in educating future engineers and scientists, especially students from traditionally underrepresented groups. Two-plus-two programs and articulation agreements between community colleges and four-year institutions are growing, allowing community college students to take their lower-division courses at local community colleges and then transfer to a university to complete their baccalaureate degrees. For many small community colleges, however, developing a comprehensive transfer engineering program that prepares students to be competitive for transfer can be challenging due to a lack of facilities, resources, and local expertise. As a result, many community college students transfer without completing the necessary courses for transfer, making timely completion of degrees difficult. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to develop resources and alternative teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. The biggest challenge in developing such strategies lies in designing and implementing courses that have lab components. This paper focuses on the developmentmore »
-
In an effort to extend access to the lower-division engineering curriculum for non-traditional students, three community colleges from Northern California collaborated to develop resources enabling four laboratory-based engineering classes (Intro, Graphics, Circuits, and Materials) to be performed in a remote, online setting, or with limited face-to-face interactions. Funded by a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), this work builds on prior efforts to provide online access to the lecture-only engineering classes in the lower-division transfer pattern, while also seeking to improve the efficacy of community college engineering programs facing challenges with staffing, scheduling, and fluctuating enrollments. This paper presents results from a second implementation of a one-unit Engineering Circuits Laboratory course, offered alongside the circuit theory course, which is already available in an online format. The course materials cover the use of basic instrumentation (DMM, Oscilloscope), analysis and interpretation of experimental data, circuit simulation, use of MATLAB to solve circuit equations in the real and complex domain, and exposure to the Arduino microcontroller. Results from both implementations are used to generalize outcomes between online vs. face-to-face cohorts, and are contextualized with input from student surveys and interviews on the perception, use and overallmore »
-
Community colleges provide an important pathway for many prospective engineering graduates, especially those from traditionally underrepresented groups. However, due to a lack of facilities, resources, student demand and/or local faculty expertise, the breadth and frequency of engineering course offerings is severely restricted at many community colleges. This in turn presents challenges for students trying to maximize their transfer eligibility and preparedness. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of a comprehensive lower-division engineering curriculum, even at small-to-medium sized community colleges. This was accomplished by developing resources and teaching strategies that could be employed in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the iterative development, testing, and refining of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. This course is required as part of recently adopted statewide model associate degree curricula for transfer into Civil, Mechanical, Aerospace, and Manufacturing engineering bachelor’s degree programs at California State Universities. However, offering such amore »
-
Community college engineering transfer programs prepare a significant fraction of the graduates from university engineering programs, yet face challenges from a fragmented lower division engineering core curriculum, limited scheduling options for students, and sometimes marginal enrollment patterns. In addition, most small college programs are run by one permanent faculty, making it difficult to provide lower-division engineering courses with the breadth and frequency needed for effective and timely transfer preparation. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses. These courses can be delivered either completely online, or with limited face-to-face interactions. This paper presents the development and testing of the teaching and learning resources for an online Engineering Circuits Laboratory class, a one-unit laboratory course offered alongside the circuit theory course, which is already available in an online format. The class materials cover the use of basic instrumentation (DMM, Oscilloscope), analysis and interpretation of experimental data, circuit simulation, use of MATLAB to solve circuit equationsmore »
-
A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of themore »
-
Access to lower-division engineering courses in the community college substantially influences whether or not community college students pursue and successfully achieve an engineering degree. With about 60% of students from under-represented minority (URM) groups beginning their post-secondary education in the community colleges, providing this access is critical if the US is to diversify and expand its engineering workforce. Still many community college lack the faculty, equipment, or local expertise to offer a comprehensive transfer engineering program, thus compromising participation in engineering courses for underrepresented groups as well as for students residing in rural and remote areas, where distance is a key barrier to post-secondary enrollment. An additional obstacle to participation is the need for so many community college students to work, many in inflexible positions that compromise their ability to attend traditional face-to-face courses. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. Thismore »
-
Community colleges play an important role in educating future scientists and engineers, especially among students from groups that are traditionally underrepresented in science, technology, engineering, and mathematics. Community college transfer programs offer lower-division courses that students can take in preparation for transfer to a four-year program. For many small community colleges, however, developing a comprehensive transfer engineering program that prepares students to be competitive for transfer can be challenging due to a lack of facilities, resources, and local expertise. As a result, engineering education becomes inaccessible to many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to develop resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. This paper focuses on the development and testing of the teaching and learning resources for Engineering Graphics, which is a four-unit course (three units of lecture and one unit of lab) covering the principles of engineering drawings, computer-aided design (using both AutoCAD and SolidWorks), and the engineering design process. The paper also presents themore »
-
The 2012 President’s Council of Advisors on Science and Technology (PCAST) report “Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science,Technology, Engineering, and Mathematics” indicated that addressing the retention problem in the first two years of college is the most promising and cost-effective strategy to produce the STEM professionals needed in order to retain US historical preeminence in science and technology. The California Community College System, with its 112 community colleges and 71 off-campus centers enrolling approximately 2.3 million students (roughly a third of all US community college students) is in a prime position to grow the future STEM workforce.However, in the face of shrinking resources and increasing costs and other barriers, an effective approach is needed in order to capitalize on this opportunity. One prong in this approach is to more fully exploit modern technological capabilities to reduce costs, broaden access, and improve educational productivity. This paper presents preliminary results of a collaborative project, Creating Alternative Learning Strategies for Transfer Engineering Programs (CALSTEP), which aims to strengthen community college engineering programs using distance education and other alternative delivery strategies that will enable small-to-medium community college engineering programs to provide their students access to lower-division engineeringmore »