skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Financial Support to Create a Learning Community Among Diverse Community College STEM Students
Although many California Community College students from underrepresented groups enter college with high levels of interest in science, technology, engineering, and mathematics (STEM), the majority of them drop out or change majors even before taking transfer-level courses due to a variety of reasons including financial difficulties, inadequate academic preparation, lack of family support, poor study skills, and inadequate or ineffective academic advising and mentoring. In 2009, Cañada College, a federally designated Hispanic-serving institution in the San Francisco Bay Area, received a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant to develop a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. In collaboration with the College’s Mathematics, Engineering, and Science Achievement (MESA) program – an academic, personal, and professional support structure has been designed and implemented to maximize the likelihood of success of these students. This support structure aims to create a learning community among the scholars through a combination of academic counseling and mentoring, personal enrichment and professional development opportunities, and strong academic support services. This paper describes how faculty, staff, administrators, alumni, student organizations, and partners in industry, four-year institutions, and professional organizations can be involved in creating an academic infrastructure that promotes academic excellence, leadership skills, and personal and professional growth among the diversity of financially needy STEM students in a community college.  more » « less
Award ID(s):
0849660
PAR ID:
10026378
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASEE annual conference & exposition
Volume:
2012
ISSN:
2153-5965
Page Range / eLocation ID:
25.1426.1 - 25.1426.17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
    more » « less
  2. Broadening participation in engineering among underrepresented minority students remains a big challenge for institutions of higher education. Since a large majority of underrepresented students attend community colleges, engineering transfer programs at these community colleges can play an important role in addressing this challenge. However, for most community college engineering programs, developing strategies and programs to increase the number and diversity of students successfully pursuing careers in engineering is especially challenging due to limited expertise, shrinking resources, and continuing budget crises. This paper is a description of how a small engineering transfer program at a Hispanic-Serving community college in California developed effective partnerships with high schools, other institutions of higher education, and industry partners in order to create opportunities for underrepresented community college students to excel in engineering. Developed through these partnerships are programs for high school students, current community college students, and community college engineering faculty. Programs for high school students include a) the Summer Engineering Institute – a two-week residential summer camp for sophomore and junior high school students, and b) the STEM Institute – a three-week program for high school freshmen to explore STEM fields. Academic and support programs for college students include: a) Math Jam – a one-week intensive math placement test review and preparation program; b) a scholarship and mentoring program academically talented and financially needy STEM students; c) a two-week introduction to research program held during the winter break to prepare students for research internships; d) a ten-week summer research internship program; e) Physics Jam – an intensive program to prepare students for success in Physics; f) Embedded Peer Instruction Cohort – a modified Supplemental Instruction program for STEM courses; g) STEM Speaker Series – a weekly presentation by professionals talking about their career and educational paths. Programs for community college STEM faculty and transfer programs include: a) Summer Engineering Teaching Institute – a two-day teaching workshop for community college STEM faculty; b) Joint Engineering Program – a consortium of 28 community college engineering programs all over California to align curriculum, improve teaching effectiveness, improve the engineering transfer process, and strengthen community college engineering transfer programs; c) Creating Alternative Learning Strategies for Transfer Engineering Programs – a collaborative program that aims to increase access to engineering courses for community college students through online instruction and alternative classroom models; and d) California Lower-Division Engineering Articulation Workshop – to align the engineering curriculum. In addition to describing the development and implementation of these programs, the paper will also provide details on how they have contributed to increasing the interest, facilitating the entry, improving the retention and enhancing the success of underrepresented minority students in engineering, as well as contributing to the strengthening of the community college engineering education pipeline. 
    more » « less
  3. Step Up to Physical Science and Engineering at Randolph (SUPER) is a recruitment and retention program for natural science and mathematics majors at Randolph College, a small liberal arts college in central Virginia. Instituted in 2010, and then funded by two National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grants, the program has multiple cohort experiences throughout a student’s four years of college. While the National Science Foundation grants allowed us to offer academic scholarships to financially needy students (about half of the students recruited for this program) and allowed us to attract a stronger and more diverse group, we do not see significantly higher retention of scholarship students vs. non-scholarship. The program has significantly increased the number of science majors and increased student retention overall, especially in under-represented groups. 
    more » « less
  4. The LINK scholarship program at the University of South Alabama is funded by an NSF S-STEM grant, awarding scholarships to low-income students transferring from community colleges in the Gulf Coast region to complete degrees in chemical, civil, computer, electrical, or mechanical engineering. The program provides financial support and academic mentoring to foster student success and optimize time to degree completion after transfer. Part of that effort includes providing pre-transfer advice through interactions with faculty and advisors at the regional community colleges. A further objective is to promote transfer student integration into the college, as this is expected to enhance academic achievement and professional development. This engagement is encouraged through faculty mentorship with frequent meetings, a cohort-building academic success seminar, and expected participation in engineering-focused student organizations. Our project includes a mixed-methods study to improve our understanding of what support mechanisms effectively integrate transfer students in our college, and how students perceive that integration to enhance their academic and professional development. Early data analysis is presented here. Student surveys indicate that they believe that peers in their classes and their assigned faculty advisors have the greatest impact on their integration and academic success. For professional development, the transfer students find that internships the most importance, followed by participation in student organizations. 
    more » « less
  5. Despite interest and potential in STEM (Science, Technology, Engineering and Mathematics), neurodivergent (ND) individuals face underrepresentation and marginalization. These individuals experience low rates of degree completion and even higher dropout rates from STEM programs. In the workplace, elevated levels of unemployment among individuals with disabilities underscore the need to address obstacles to persistence in STEM programs and pathways to the workforce. The AIE-STEMPLOS (Access to Innovative Education in Science, Technology, Engineering, and Mathematics-Providing Learning Opportunities and Scholarship) program at Landmark College, launched in 2021, aims to empower ND STEM scholars by leveraging effective mentoring strategies to support degree completion and career development in STEM fields. Supported by the National Science Foundation (NSF) through scholarship funding (S-STEM), the program's primary goals are to support domestic low-income, academically talented ND scholars in Computer Science and Life Science, create a robust culture of mentorship within the STEM department, and strengthen scholarly professional development. We generally refer to students as scholars in this program as that is the language preferred by the NSF. The mentoring component is designed to enhance psychosocial and professional development through faculty, group, and peer mentoring. Employing tools like the Birkman Method, mentor maps and Individual Development Plans (IDP), the program fosters self-understanding and community among scholars. Evaluation methods include qualitative and quantitative assessments, with data showing high satisfaction with mentor-mentee relationships, robust engagement in professional development activities, and significant improvements in scholars' professional outlook and STEM identity. This comprehensive approach integrates faculty mentors, career counselors, and weekly cohort meetings for mentoring and professional development activities. This paper will highlight the faculty and group/ peer mentoring components of the program, demonstrating how inclusive educational strategies can promote diversity within STEM fields. 
    more » « less