- Award ID(s):
- 1833985
- PAR ID:
- 10447550
- Date Published:
- Journal Name:
- ASEE Annual Conference and Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation.more » « less
-
Using Financial Support to Create a Learning Community Among Diverse Community College STEM StudentsAlthough many California Community College students from underrepresented groups enter college with high levels of interest in science, technology, engineering, and mathematics (STEM), the majority of them drop out or change majors even before taking transfer-level courses due to a variety of reasons including financial difficulties, inadequate academic preparation, lack of family support, poor study skills, and inadequate or ineffective academic advising and mentoring. In 2009, Cañada College, a federally designated Hispanic-serving institution in the San Francisco Bay Area, received a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant to develop a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. In collaboration with the College’s Mathematics, Engineering, and Science Achievement (MESA) program – an academic, personal, and professional support structure has been designed and implemented to maximize the likelihood of success of these students. This support structure aims to create a learning community among the scholars through a combination of academic counseling and mentoring, personal enrichment and professional development opportunities, and strong academic support services. This paper describes how faculty, staff, administrators, alumni, student organizations, and partners in industry, four-year institutions, and professional organizations can be involved in creating an academic infrastructure that promotes academic excellence, leadership skills, and personal and professional growth among the diversity of financially needy STEM students in a community college.more » « less
-
This study provides a deeper understanding of the challenges facing community college transfer students in engineering and their faculty advisors at a 4-year research university. Using a phenomenological approach, data was analyzed from interviews with nine engineering transfers and seven faculty advisors. The findings unveiled nuanced barriers faced by engineering transfers and their faculty advisors, including transfers’ academic unpreparedness and struggles with nonacademic responsibilities; advisors’ heavy workload, disconnection with other student services, and lack of communication with community college advisors; and restrictions on course selection and program requirements in 4-year engineering programs. The findings provide meaningful insights into developing new policies and practices to improve the academic advising experience for engineering transfers.
-
The Student Pathways in Engineering and Computing for Transfers (SPECTRA) program is anticipated to provide a streamlined academic pathway for transfer students from 2-year programs within South Carolina into Clemson University, and deliver programming to aid their academic success and social integration. To achieve this, the faculty intended to solidify cohorts of students at two community/technical colleges (Spartanburg Community College and Trident Technical College) and then support that cohort as they transitioned together into Clemson University. This paper provides an overview of the larger SPECTRA program and a deeper dive into the role of the graduate teaching assistants (‘fellows’). Specifically, we will provide an overview of: (1) changes between initial program vision and adjustments from this vision during initial implementation, (2) recruitment processes and application requirements for the graduate teaching fellowship, (3) the framework for development of undergraduate research courses taught by fellows, (4) mentorship web for fellows on the research university campus and technical/community college locations, (5) the lessons learned from semi structured programmatic exit interviews of matriculated fellows, and (6) design for additional professional programming for scholars at the community/technical college locations by the fellows.more » « less
-
At San Francisco State University, a Hispanic Serving Institute and a Primarily Undergraduate Institution, 67% of engineering students are from ethnic minority groups, with only 27% of Hispanic students retained and graduated in their senior year. Additionally, only 14% of students reported full-time employment secured at the time of graduation. Of these secured jobs, only 54% were full-time positions (40+ hours a week). To improve the situation, San Francisco State University, in collaboration with two local community colleges, Skyline and Cañada Colleges, was recently funded by the National Science Foundation through a Hispanic Serving Institute Improving Undergraduate STEM Education Strengthening Student Motivation and Resilience through Research and Advising program to enhance undergraduate engineering education and build capacity for student success. This project will use a data-driven and evidence-based approach to identify the barriers to the success of underrepresented minority students and to generate new knowledge on the best practices for increasing students’ retention and graduation rates, self- efficacy, professional development, and workforce preparedness. Three objectives underpin this overall goal. The first is to develop and implement a Summer Research Internship Program together with community college partners. The second is to establish an HSI Engineering Success Center to provide students with academic resources, networking opportunities with industry, and career development tools. The third is to develop resources for the professional development of faculty members, including Summer Faculty Teaching Workshops, an Inclusive Teaching and Mentoring Seminar Series, and an Engineering Faculty Learning Community. Qualitative and quantitative approaches are used to assess the project outcomes using a survey instrument and interview protocols developed by an external evaluator. This paper discusses an overview of the project and its first-year implementation. The focus is placed on the introduction and implementation of the several main project components, namely the Engineering Success Center, Summer Research Internship Program, and Faculty Summer Teaching Workshop. The preliminary evaluation results, demonstrating the great success of these strategies, are also discussed.more » « less