skip to main content

Title: The Double Bind of Race and Gender: A Look into the Experiences of Women of Color in Engineering
African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, more » achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. « less
Authors:
; ; ;
Award ID(s):
1648454
Publication Date:
NSF-PAR ID:
10026437
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Sponsoring Org:
National Science Foundation
More Like this
  1. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g.,more »retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC.« less
  2. Giving a voice to marginalized groups and understanding the double bind is critical, especially after the Charlotte, VA protests and the white supremacist discourse that has pervaded our country. The result of the discourse, more subtle beliefs about white superiority and institutional barriers is an overrepresentation of women of color (WOC) in the leaky STEM pipeline and thus the loss of their presence and expertise. The absence of WOC hinders knowledge production and innovation that is essential for societal advancements and scientific discovery. The “chilly climate” is often cited as an explanation for the loss of WOC from STEM. However, interactions that allow the “chilly climate” to persist have yet to be characterized. This lack of understanding can inhibit the professional engineering identity construction of WOC. Additionally, engineering education research typically focuses on a single identity dimension such as gender or socio-economic status. These studies connect an identity dimension to student outcomes and few studies clarify how the identity is situated within the social context of the engineering culture. Consequently, a need exist to examine how the engineering culture impacts multiple components of identity and intersecting identities of WOC. To address this gap, our study illuminates the intersections of identitymore »of WOC and how they perceive the double bind of race and gender within the context of their engineering education. The data reported here are a part of a larger, sequential mixed-methods study (N=276) of undergraduate female engineering students at a large Midwestern research university. This project applies the framework of intersectionality with the following scales: Engineering Identity, Ethnic Identity, Womanist Identity, Microaggressions, and Depression. We use intersectionality to investigate the interaction between intersecting social identities and educational conditions. We introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender, racial, and intersecting identity development of WOC. We utilize the microaggressions scale, in order to develop quantitative measures of gender-racial discrimination in STEM and compare to previous research. We also included the Patient Health Questionnaire (PHQ-9), an instrument for measuring depression, to assess health outcomes of respondents’ experiences of gender-racial microaggressions. Our three emergent findings suggest instrument accuracy and provide insight into the identity and depression subscales. Factor analysis established a basis to refine our quantitative survey instruments, and indicated that 23 items could offer greater accuracy than the original 54 items instrument. Second, the majority of participants report a high level of identification with engineering. This result rebuffs the long-held stereotypes that females are less interested in engineering. Third, a significant portion of female respondents self-reported PHQ-9 scores in the 15-19 range, which corresponds with a “major depression, moderately severe” provisional diagnosis, the second-highest in severity in the PHQ-9 provisional diagnosis scale. These elevated levels of depression correlated significantly to frequent instances of microaggressions. These preliminary findings are providing never-before seen insight into the experiences of WOC in engineering. Our results suggest a path to accurately describe the experiences of WOC in engineering, while revealing options for improving inclusion efforts.« less
  3. Giving a voice to marginalized groups and understanding the double bind is critical, especially after the Charlotte, VA protests and the white supremacist discourse that has pervaded our country. The result of the discourse, more subtle beliefs about white superiority and institutional barriers is an overrepresentation of women of color (WOC) in the leaky STEM pipeline and thus the loss of their presence and expertise. The absence of WOC hinders knowledge production and innovation that is essential for societal advancements and scientific discovery. The “chilly climate” is often cited as an explanation for the loss of WOC from STEM. However, interactions that allow the “chilly climate” to persist have yet to be characterized. This lack of understanding can inhibit the professional engineering identity construction of WOC. Additionally, engineering education research typically focuses on a single identity dimension such as gender or socio-economic status. These studies connect an identity dimension to student outcomes and few studies clarify how the identity is situated within the social context of the engineering culture. Consequently, a need exist to examine how the engineering culture impacts multiple components of identity and intersecting identities of WOC. To address this gap, our study illuminates the intersections of identitymore »of WOC and how they perceive the double bind of race and gender within the context of their engineering education. The data reported here are a part of a larger, sequential mixed-methods study (N=276) of undergraduate female engineering students at a large Midwestern research university. This project applies the framework of intersectionality with the following scales: Engineering Identity, Ethnic Identity, Womanist Identity, Microaggressions, and Depression. We use intersectionality to investigate the interaction between intersecting social identities and educational conditions. We introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender, racial, and intersecting identity development of WOC. We utilize the microaggressions scale, in order to develop quantitative measures of gender-racial discrimination in STEM and compare to previous research. We also included the Patient Health Questionnaire (PHQ-9), an instrument for measuring depression, to assess health outcomes of respondents’ experiences of gender-racial microaggressions. Our three emergent findings suggest instrument accuracy and provide insight into the identity and depression subscales. Factor analysis established a basis to refine our quantitative survey instruments, and indicated that 23 items could offer greater accuracy than the original 54 items instrument. Second, the majority of participants report a high level of identification with engineering. This result rebuffs the long-held stereotypes that females are less interested in engineering. Third, a significant portion of female respondents self-reported PHQ-9 scores in the 15-19 range, which corresponds with a “major depression, moderately severe” provisional diagnosis, the second-highest in severity in the PHQ-9 provisional diagnosis scale. These elevated levels of depression correlated significantly to frequent instances of microaggressions. These preliminary findings are providing never-before seen insight into the experiences of WOC in engineering. Our results suggest a path to accurately describe the experiences of WOC in engineering, while revealing options for improving inclusion efforts.« less
  4. Engineering is in need of new ideas and innovations to keep up with the growing demands of infrastructure and technology of today’s world. Diversity of thought and experience is necessary for this need in engineering to be met. Women of color (WOC) offer a source of underutilized intellectual capital in engineering. However, despite efforts in engineering education, WOC remain underrepresented and underserved (Green, 2006) in engineering and the student body of most engineering programs in universities in the United States (Cross et al., 2017). Research has shown that a possible reason for WOC leaving the engineering field may be from experiences of hostility within the environment that is associated with intersectional identities (Cross et al., 2017; Cross & Paretti, 2012; Mendenhall et al., 2018). The intersectionality of race and gender for WOC, also known as the “double bind,” play a large role in their engineering education experiences (Malcolm, 1976; Malcom & Malcom, 2011). This intersectionality of multiple marginalized identities has a multiplicative (i.e., not additive) effect on the struggles to participate in STEM, which can increase the impact of the hostile chilly climate of engineering (Mendenhall et al., 2018; Ong et al., 2011; Ong, Jaumot-Pascual, & Ko, 2020). WOC mustmore »operate differently than their white, male and female counterparts because of their unwelcoming experiences during their engineering education. So, how does the double bind lead to a double standard in engineering? In this study, we seek to explore how the interrelated system of oppression previous scholars named the double standard (Foschi, Lai, & Sigerson, 1994; Foschi, 1996, 2000) operate within engineering education and how the double bind WOC experience impacts this system of oppression. Foschi (2000) defines the double standard as “the use of different requirements for the inference of possession of an attribute, depending on the individuals being assessed” (p. 21). That is to say, inconsistent and unspoken performance criteria exist within engineering and WOC may be held to different standards based on negative stereotypes or bias beyond what their white male or female counterparts are held. In this work, this definition served to examine the double standards in educational and professional settings with “competence in task groups” (p. 21). We operationalize the double standard in this study to be a set of principles produced by the false notion of meritocracy and unacknowledged bias in engineering that serve to benefit the majority student population while simultaneously excluding or ignoring traditionally underserved minority (TUM) populations.« less
  5. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to whichmore »they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering.« less