skip to main content


Title: Intersecting Identities of Women in Engineering
Giving a voice to marginalized groups and understanding the double bind is critical, especially after the Charlotte, VA protests and the white supremacist discourse that has pervaded our country. The result of the discourse, more subtle beliefs about white superiority and institutional barriers is an overrepresentation of women of color (WOC) in the leaky STEM pipeline and thus the loss of their presence and expertise. The absence of WOC hinders knowledge production and innovation that is essential for societal advancements and scientific discovery. The “chilly climate” is often cited as an explanation for the loss of WOC from STEM. However, interactions that allow the “chilly climate” to persist have yet to be characterized. This lack of understanding can inhibit the professional engineering identity construction of WOC. Additionally, engineering education research typically focuses on a single identity dimension such as gender or socio-economic status. These studies connect an identity dimension to student outcomes and few studies clarify how the identity is situated within the social context of the engineering culture. Consequently, a need exist to examine how the engineering culture impacts multiple components of identity and intersecting identities of WOC. To address this gap, our study illuminates the intersections of identity of WOC and how they perceive the double bind of race and gender within the context of their engineering education. The data reported here are a part of a larger, sequential mixed-methods study (N=276) of undergraduate female engineering students at a large Midwestern research university. This project applies the framework of intersectionality with the following scales: Engineering Identity, Ethnic Identity, Womanist Identity, Microaggressions, and Depression. We use intersectionality to investigate the interaction between intersecting social identities and educational conditions. We introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender, racial, and intersecting identity development of WOC. We utilize the microaggressions scale, in order to develop quantitative measures of gender-racial discrimination in STEM and compare to previous research. We also included the Patient Health Questionnaire (PHQ-9), an instrument for measuring depression, to assess health outcomes of respondents’ experiences of gender-racial microaggressions. Our three emergent findings suggest instrument accuracy and provide insight into the identity and depression subscales. Factor analysis established a basis to refine our quantitative survey instruments, and indicated that 23 items could offer greater accuracy than the original 54 items instrument. Second, the majority of participants report a high level of identification with engineering. This result rebuffs the long-held stereotypes that females are less interested in engineering. Third, a significant portion of female respondents self-reported PHQ-9 scores in the 15-19 range, which corresponds with a “major depression, moderately severe” provisional diagnosis, the second-highest in severity in the PHQ-9 provisional diagnosis scale. These elevated levels of depression correlated significantly to frequent instances of microaggressions. These preliminary findings are providing never-before seen insight into the experiences of WOC in engineering. Our results suggest a path to accurately describe the experiences of WOC in engineering, while revealing options for improving inclusion efforts.  more » « less
Award ID(s):
1648454
NSF-PAR ID:
10109328
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Giving a voice to marginalized groups and understanding the double bind is critical, especially after the Charlotte, VA protests and the white supremacist discourse that has pervaded our country. The result of the discourse, more subtle beliefs about white superiority and institutional barriers is an overrepresentation of women of color (WOC) in the leaky STEM pipeline and thus the loss of their presence and expertise. The absence of WOC hinders knowledge production and innovation that is essential for societal advancements and scientific discovery. The “chilly climate” is often cited as an explanation for the loss of WOC from STEM. However, interactions that allow the “chilly climate” to persist have yet to be characterized. This lack of understanding can inhibit the professional engineering identity construction of WOC. Additionally, engineering education research typically focuses on a single identity dimension such as gender or socio-economic status. These studies connect an identity dimension to student outcomes and few studies clarify how the identity is situated within the social context of the engineering culture. Consequently, a need exist to examine how the engineering culture impacts multiple components of identity and intersecting identities of WOC. To address this gap, our study illuminates the intersections of identity of WOC and how they perceive the double bind of race and gender within the context of their engineering education. The data reported here are a part of a larger, sequential mixed-methods study (N=276) of undergraduate female engineering students at a large Midwestern research university. This project applies the framework of intersectionality with the following scales: Engineering Identity, Ethnic Identity, Womanist Identity, Microaggressions, and Depression. We use intersectionality to investigate the interaction between intersecting social identities and educational conditions. We introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender, racial, and intersecting identity development of WOC. We utilize the microaggressions scale, in order to develop quantitative measures of gender-racial discrimination in STEM and compare to previous research. We also included the Patient Health Questionnaire (PHQ-9), an instrument for measuring depression, to assess health outcomes of respondents’ experiences of gender-racial microaggressions. Our three emergent findings suggest instrument accuracy and provide insight into the identity and depression subscales. Factor analysis established a basis to refine our quantitative survey instruments, and indicated that 23 items could offer greater accuracy than the original 54 items instrument. Second, the majority of participants report a high level of identification with engineering. This result rebuffs the long-held stereotypes that females are less interested in engineering. Third, a significant portion of female respondents self-reported PHQ-9 scores in the 15-19 range, which corresponds with a “major depression, moderately severe” provisional diagnosis, the second-highest in severity in the PHQ-9 provisional diagnosis scale. These elevated levels of depression correlated significantly to frequent instances of microaggressions. These preliminary findings are providing never-before seen insight into the experiences of WOC in engineering. Our results suggest a path to accurately describe the experiences of WOC in engineering, while revealing options for improving inclusion efforts. 
    more » « less
  2. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less
  3. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less
  4. null (Ed.)
    Engineering is in need of new ideas and innovations to keep up with the growing demands of infrastructure and technology of today’s world. Diversity of thought and experience is necessary for this need in engineering to be met. Women of color (WOC) offer a source of underutilized intellectual capital in engineering. However, despite efforts in engineering education, WOC remain underrepresented and underserved (Green, 2006) in engineering and the student body of most engineering programs in universities in the United States (Cross et al., 2017). Research has shown that a possible reason for WOC leaving the engineering field may be from experiences of hostility within the environment that is associated with intersectional identities (Cross et al., 2017; Cross & Paretti, 2012; Mendenhall et al., 2018). The intersectionality of race and gender for WOC, also known as the “double bind,” play a large role in their engineering education experiences (Malcolm, 1976; Malcom & Malcom, 2011). This intersectionality of multiple marginalized identities has a multiplicative (i.e., not additive) effect on the struggles to participate in STEM, which can increase the impact of the hostile chilly climate of engineering (Mendenhall et al., 2018; Ong et al., 2011; Ong, Jaumot-Pascual, & Ko, 2020). WOC must operate differently than their white, male and female counterparts because of their unwelcoming experiences during their engineering education. So, how does the double bind lead to a double standard in engineering? In this study, we seek to explore how the interrelated system of oppression previous scholars named the double standard (Foschi, Lai, & Sigerson, 1994; Foschi, 1996, 2000) operate within engineering education and how the double bind WOC experience impacts this system of oppression. Foschi (2000) defines the double standard as “the use of different requirements for the inference of possession of an attribute, depending on the individuals being assessed” (p. 21). That is to say, inconsistent and unspoken performance criteria exist within engineering and WOC may be held to different standards based on negative stereotypes or bias beyond what their white male or female counterparts are held. In this work, this definition served to examine the double standards in educational and professional settings with “competence in task groups” (p. 21). We operationalize the double standard in this study to be a set of principles produced by the false notion of meritocracy and unacknowledged bias in engineering that serve to benefit the majority student population while simultaneously excluding or ignoring traditionally underserved minority (TUM) populations. 
    more » « less
  5. null (Ed.)
    The current study utilized the intersectionality theory to analyze microaggressions towards engineering undergraduate underrepresented gender and racial minority students. In this study, participants were sampled from intersecting identity groups (Asian female, Asian male, Black female, Black male, Hispanic female, Hispanic male, White female) at two institutional settings: 1) a Historically Black College/University (HBCU) and 2) a Predominantly White Institution (PWI). The study’s analysis examined microaggressions in the context of undergraduate engineering programs at both sites, an HBCU and a PWI. The results suggested that a higher frequency of microaggressions took place at the PWI than the HBCU. The most frequently identified microaggressions included disjointed race and gender dialogue, hidden language, projected stereotypes, an ascription of intelligence, silence, and marginalization. The paper aims to increase awareness of the prevalence and varying types of microaggressions experienced between the sites. These results may influence policies and educational practices to meet the needs of underrepresented minority students in engineering. This material is based upon work supported by the National Science Foundation under Grant No. (1828172 and 1828559). “Collaborative Research: An Intersectional Perspective to Studying Microaggressions in Engineering Programs”. 
    more » « less