In spike-timing-dependent plasticity (STDP), synap-tic weights are modified according to the relative time difference between pre and post-synaptic spikes of spiking neural network (SNN). A triplet STDP model was proposed since this model can better take account of a series of spikes and thus more closely mimic the activity in biological neural systems. Circuit that can switch between different STDP rules was also introduced to improve the range of STDP applications. To apply the advantages of triplet STDP to various tasks, a mixed-signal triplet reconfigurable STDP circuit and its hardware prototype are proposed in this paper. The performance analysis of the STDP training algorithm is carried out with a hardware testbench as well as Pytorch-based SNN. This triplet STDP design achieves 3.28% and 3.63% higher accuracy than the pair STDP learning rule through datasets such as MNIST and CIFAR-10. Our design shows one of the best reconfigurability while keeping a relatively low energy per spike operation (SOP) through the performance comparison with the state of the arts. 
                        more » 
                        « less   
                    
                            
                            Calcium-modulated supervised spike-timing-dependent plasticity for readout training and sparsification of the liquid state machine
                        
                    
    
            The Liquid State Machine (LSM) is a promising model of recurrent spiking neural networks. It consists of a fixed recurrent network, or the reservoir, which projects to a readout layer through plastic readout synapses. The classification performance is highly dependent on the training of readout synapses which tend to be very dense and contribute significantly to the overall network complexity. We present a unifying biologically inspired calcium-modulated supervised spike-timing dependent plasticity (STDP) approach to training and sparsification of readout synapses, where supervised temporal learning is modulated by the post-synaptic firing level characterized by the post-synaptic calcium concentration. The proposed approach prevents synaptic weight saturation, boosts learning performance, and sparsifies the connectivity between the reservoir and readout layer. Using the recognition rate of spoken English letters adopted from the TI46 speech corpus as a measure of performance, we demonstrate that the proposed approach outperforms a baseline supervised STDP mechanism by up to 25%, and a competitive non-STDP spike-dependent training algorithm by up to 2.7%. Furthermore, it can prune out up to 30% of readout synapses without causing significant performance degradation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1639995
- PAR ID:
- 10026439
- Date Published:
- Journal Name:
- Proceedings of ... International Joint Conference on Neural Networks
- ISSN:
- 2161-4393
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Programmable synaptic devices that can achieve timing‐dependent weight updates are key components to implementing energy‐efficient spiking neural networks (SNNs). Electrochemical ionic synapses (EIS) enable the programming of weight updates with very low energy consumption and low variability. Here, the strongly nonlinear kinetics of EIS, arising from nonlinear dynamics of ions and charge transfer reactions in solids, are leveraged to implement various forms of spike‐timing‐dependent plasticity (STDP). In particular, protons are used as the working ion. Different forms of the STDP function are deterministically predicted and emulated by a linear superposition of appropriately designed pre‐ and post‐synaptic neuron signals. Heterogeneous STDP is also demonstrated within the array to capture different learning rules in the same system. STDP timescales are controllable, ranging from milliseconds to nanoseconds. The STDP resulting from EIS has lower variability than other hardware STDP implementations, due to the deterministic and uniform insertion of charge in the tunable channel material. The results indicate that the ion and charge transfer dynamics in EIS can enable bio‐plausible synapses for SNN hardware with high energy efficiency, reliability, and throughput.more » « less
- 
            The Artificial Intelligence (AI) disruption continues unabated, albeit at extreme compute requirements. Neuromorphic circuits and systems offer a panacea for this extravagance. To this effect, event-based learning such as spike-timing-dependent plasticity (STDP) in spiking neural networks (SNNs) is an active area of research. Hebbian learning in SNNs fundamentally involves synaptic weight updates based on temporal correlations between pre- and post- synaptic neural activities. While there are broadly two approaches of realizing STDP, i.e. All-to-All versus Nearest Neighbor (NN), there exist strong arguments favoring the NN approach on the biologically plausibility front. In this paper, we present a novel current-mode implementation of a postsynaptic event-based NN STDP-based synapse. We leverage transistor subthreshold dynamics to generate exponential STDP traces using repurposed log-domain low-pass filter circuits. Synaptic weight operations involving addition and multiplications are achieved by the Kirchoff current law and the translinear principle respectively. Simulation results from the NCSU TSMC 180 nm technology are presented. Finally, the ideas presented here hold implications for engineering efficient hardware to meet the growing AI training and inference demands.more » « less
- 
            The Artificial Intelligence (AI) disruption continues unabated, albeit at extreme compute requirements. Neuromorphic circuits and systems offer a panacea for this extravagance. To this effect, event-based learning such as spike-timing-dependent plasticity (STDP) in spiking neural networks (SNNs) is an active area of research. Hebbian learning in SNNs fundamentally involves synaptic weight updates based on temporal correlations between pre- and post- synaptic neural activities. While there are broadly two approaches of realizing STDP, i.e. All-to-All versus Nearest Neighbor (NN), there exist strong arguments favoring the NN approach on the biologically plausibility front. In this paper, we present a novel current-mode implementation of a postsynaptic event-based NN STDP-based synapse. We leverage transistor subthreshold dynamics to generate exponential STDP traces using repurposed log-domain low-pass filter circuits. Synaptic weight operations involving addition and multiplications are achieved by the Kirchoff current law and the translinear principle respectively. Simulation results from the NCSU TSMC 180 nm technology are presented. Finally, the ideas presented here hold implications for engineering efficient hardware to meet the growing AI training and inference demands.more » « less
- 
            Magnetic skyrmions, as scalable and nonvolatile spin textures, can dynamically interact with fields and currents, making them promising for unconventional computing. This paper presents a neuromorphic device based on skyrmion manipulation chambers to implement spike-timing-dependent plasticity (STDP), a mechanism for unsupervised learning in brain-inspired computing. STDP adjusts synaptic weights based on the timing of pre-synaptic and post-synaptic spikes. The proposed three-chamber design encodes synaptic weight in the number of skyrmions in the center chamber, with left and right chambers for pre- and post-synaptic spikes, respectively. Micromagnetic simulations demonstrate that the timing between applied currents across the chambers controls the final skyrmion count (weight). The device exhibits adaptability and learning capabilities by manipulating chamber parameters, mimicking Hebbian and dendritic location-based plasticity. The device's ability to maintain state post-write highlights its potential for advancing adaptable neuromorphic devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    