The Artificial Intelligence (AI) disruption continues unabated, albeit at extreme compute requirements. Neuromorphic circuits and systems offer a panacea for this extravagance. To this effect, event-based learning such as spike-timing-dependent plasticity (STDP) in spiking neural networks (SNNs) is an active area of research. Hebbian learning in SNNs fundamentally involves synaptic weight updates based on temporal correlations between pre- and post- synaptic neural activities. While there are broadly two approaches of realizing STDP, i.e. All-to-All versus Nearest Neighbor (NN), there exist strong arguments favoring the NN approach on the biologically plausibility front. In this paper, we present a novel current-mode implementation of a postsynaptic event-based NN STDP-based synapse. We leverage transistor subthreshold dynamics to generate exponential STDP traces using repurposed log-domain low-pass filter circuits. Synaptic weight operations involving addition and multiplications are achieved by the Kirchoff current law and the translinear principle respectively. Simulation results from the NCSU TSMC 180 nm technology are presented. Finally, the ideas presented here hold implications for engineering efficient hardware to meet the growing AI training and inference demands.
more »
« less
Tunable spike-timing-dependent plasticity in magnetic skyrmion manipulation chambers
Magnetic skyrmions, as scalable and nonvolatile spin textures, can dynamically interact with fields and currents, making them promising for unconventional computing. This paper presents a neuromorphic device based on skyrmion manipulation chambers to implement spike-timing-dependent plasticity (STDP), a mechanism for unsupervised learning in brain-inspired computing. STDP adjusts synaptic weights based on the timing of pre-synaptic and post-synaptic spikes. The proposed three-chamber design encodes synaptic weight in the number of skyrmions in the center chamber, with left and right chambers for pre- and post-synaptic spikes, respectively. Micromagnetic simulations demonstrate that the timing between applied currents across the chambers controls the final skyrmion count (weight). The device exhibits adaptability and learning capabilities by manipulating chamber parameters, mimicking Hebbian and dendritic location-based plasticity. The device's ability to maintain state post-write highlights its potential for advancing adaptable neuromorphic devices.
more »
« less
- Award ID(s):
- 1940788
- PAR ID:
- 10573520
- Publisher / Repository:
- Applied Physics Letters
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 124
- Issue:
- 26
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Artificial Intelligence (AI) disruption continues unabated, albeit at extreme compute requirements. Neuromorphic circuits and systems offer a panacea for this extravagance. To this effect, event-based learning such as spike-timing-dependent plasticity (STDP) in spiking neural networks (SNNs) is an active area of research. Hebbian learning in SNNs fundamentally involves synaptic weight updates based on temporal correlations between pre- and post- synaptic neural activities. While there are broadly two approaches of realizing STDP, i.e. All-to-All versus Nearest Neighbor (NN), there exist strong arguments favoring the NN approach on the biologically plausibility front. In this paper, we present a novel current-mode implementation of a postsynaptic event-based NN STDP-based synapse. We leverage transistor subthreshold dynamics to generate exponential STDP traces using repurposed log-domain low-pass filter circuits. Synaptic weight operations involving addition and multiplications are achieved by the Kirchoff current law and the translinear principle respectively. Simulation results from the NCSU TSMC 180 nm technology are presented. Finally, the ideas presented here hold implications for engineering efficient hardware to meet the growing AI training and inference demands.more » « less
-
Abstract Spiking neural network (SNN) in future neuromorphic architectures requires hardware devices to be not only capable of emulating fundamental functionalities of biological synapse such as spike-timing dependent plasticity (STDP) and spike-rate dependent plasticity (SRDP), but also biodegradable to address current ecological challenges of electronic waste. Among different device technologies and materials, memristive synaptic devices based on natural organic materials have emerged as the favourable candidate to meet these demands. The metal–insulator-metal structure is analogous to biological synapse with low power consumption, fast switching speed and simulation of synaptic plasticity, while natural organic materials are water soluble, renewable and environmental friendly. In this study, the potential of a natural organic material—honey-based memristor for SNNs was demonstrated. The device exhibited forming-free bipolar resistive switching, a high switching speed of 100 ns set time and 500 ns reset time, STDP and SRDP learning behaviours, and dissolving in water. The intuitive conduction models for STDP and SRDP were proposed. These results testified that honey-based memristive synaptic devices are promising for SNN implementation in green electronics and biodegradable neuromorphic systems.more » « less
-
In spike-timing-dependent plasticity (STDP), synap-tic weights are modified according to the relative time difference between pre and post-synaptic spikes of spiking neural network (SNN). A triplet STDP model was proposed since this model can better take account of a series of spikes and thus more closely mimic the activity in biological neural systems. Circuit that can switch between different STDP rules was also introduced to improve the range of STDP applications. To apply the advantages of triplet STDP to various tasks, a mixed-signal triplet reconfigurable STDP circuit and its hardware prototype are proposed in this paper. The performance analysis of the STDP training algorithm is carried out with a hardware testbench as well as Pytorch-based SNN. This triplet STDP design achieves 3.28% and 3.63% higher accuracy than the pair STDP learning rule through datasets such as MNIST and CIFAR-10. Our design shows one of the best reconfigurability while keeping a relatively low energy per spike operation (SOP) through the performance comparison with the state of the arts.more » « less
-
Abstract Memristive devices have demonstrated rich switching behaviors that closely resemble synaptic functions and provide a building block to construct efficient neuromorphic systems. It is demonstrated that resistive switching effects are controlled not only by the external field, but also by the dynamics of various internal state variables that facilitate the ionic processes. The internal temperature, for example, works as a second‐state variable to regulate the ion motion and provides the internal timing mechanism for the native implementation of timing‐ and rate‐based learning rules such as spike timing dependent plasticity (STDP). In this work, it is shown that the 2nd state‐variable in a Ta2O5‐based memristor, its internal temperature, can be systematically engineered by adjusting the material properties and device structure, leading to tunable STDP characteristics with different time constants. When combined with an artificial post‐synaptic neuron, the 2nd‐order memristor synapses can spontaneously capture the temporal correlation in the input streaming events.more » « less
An official website of the United States government

