skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy: ULTRA-SENSITIVE MOMENT MAGNETOMETRY
Award ID(s):
1647504
PAR ID:
10026443
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
17
Issue:
9
ISSN:
1525-2027
Page Range / eLocation ID:
3754 to 3774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Interest in magnetic fields on the ancient Earth and other planetary bodies has motivated the paleomagnetic analysis of complex rocks such as meteorites that carry heterogeneous magnetizations at <<1 mm scales. The net magnetic moment of natural remanent magnetization (NRM) in such small samples is often below the detection threshold of common cryogenic magnetometers. The quantum diamond microscope (QDM) is an emerging magnetic imaging technology with ~1 μm resolution and can, in principle, recover magnetizations as weak as 10−17 Am2. However, the typically 1–100 μm sample‐to‐sensor distance of QDM measurements can result in complex (nondipolar) magnetic field maps, from which the net magnetic moment cannot be determined using a simple algorithm. Here we generate synthetic magnetic field maps to quantify the errors introduced by sample nondipolarity and by map processing procedures such as upward continuation. We find that inversions based on least squares dipole fits of upward continued data can recover the net moment of complex samples with <5% to 10% error for maps with signal‐to‐noise ratio (SNR) in the range typical of current generation QDMs. We validate these error estimates experimentally using comparisons between QDM maps and between QDM and SQUID microscope data, concluding that, within the limitations described here, the QDM is a robust technique for recovering the net magnetic moment of weakly magnetized samples. More sophisticated net moment fitting algorithms in the future can be combined with upward continuation methods described here to improve accuracy. 
    more » « less
  2. null (Ed.)
  3. Simultaneous measurements of two nitrogen vacancy centers in diamond enables spatiotemporal magnetometry. 
    more » « less
  4. We present a quantum optics-based detection method for determining the position and current of an electron beam. As electrons pass through a dilute vapor of rubidium atoms, their magnetic field perturbs the atomic spin's quantum state and causes polarization rotation of a laser resonant with an optical transition of the atoms. By measuring the polarization rotation angle across the laser beam, we recreate a 2D projection of the magnetic field and use it to determine the e-beam position, size, and total current. We tested this method for an e-beam with currents ranging from 30 to 110 μA. Our approach is insensitive to electron kinetic energy, and we confirmed that experimentally between 10 and 20 keV. This technique offers a unique platform for noninvasive characterization of charged particle beams used in accelerators for particle and nuclear physics research. 
    more » « less