skip to main content


Title: Amplified Arctic warming and mid-latitude weather: new perspectives on emerging connections: Amplified Arctic warming and mid-latitude weather
NSF-PAR ID:
10027084
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Wiley Interdisciplinary Reviews: Climate Change
Volume:
8
Issue:
5
ISSN:
1757-7780
Page Range / eLocation ID:
e474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic amplification (AA) is a coupled atmosphere-sea ice-ocean process. This understanding has evolved from the early concept of AA, as a consequence of snow-ice line progressions, through more than a century of research that has clarified the relevant processes and driving mechanisms of AA. The predictions made by early modeling studies, namely the fall/winter maximum, bottom-heavy structure, the prominence of surface albedo feedback, and the importance of stable stratification have withstood the scrutiny of multi-decadal observations and more complex models. Yet, the uncertainty in Arctic climate projections is larger than in any other region of the planet, making the assessment of high-impact, near-term regional changes difficult or impossible. Reducing this large spread in Arctic climate projections requires a quantitative process understanding. This manuscript aims to build such an understanding by synthesizing current knowledge of AA and to produce a set of recommendations to guide future research. It briefly reviews the history of AA science, summarizes observed Arctic changes, discusses modeling approaches and feedback diagnostics, and assesses the current understanding of the most relevant feedbacks to AA. These sections culminate in a conceptual model of the fundamental physical mechanisms causing AA and a collection of recommendations to accelerate progress towards reduced uncertainty in Arctic climate projections. Our conceptual model highlights the need to account for local feedback and remote process interactions within the context of the annual cycle to constrain projected AA. We recommend raising the priority of Arctic climate sensitivity research, improving the accuracy of Arctic surface energy budget observations, rethinking climate feedback definitions, coordinating new model experiments and intercomparisons, and further investigating the role of episodic variability in AA. 
    more » « less
  2. Abstract

    We investigate factors influencing European winter (DJFM) air temperatures for the period 1979–2015 with the focus on changes during the recent period of rapid Arctic warming (1998–2015). We employ meteorological reanalyses analysed with a combination of correlation analysis, two pattern clustering techniques, and back‐trajectory airmass identification. In all five selected European regions, severe cold winter events lasting at least 4 days are significantly correlated with warm Arctic episodes. Relationships during opposite conditions of warm Europe/cold Arctic are also significant. Correlations have become consistently stronger since 1998. Large‐scale pattern analysis reveals that cold spells are associated with the negative phase of the North Atlantic Oscillation (NAO‐) and the positive phase of the Scandinavian (SCA+) pattern, which in turn are correlated with the divergence of dry‐static energy transport. Warm European extremes are associated with opposite phases of these patterns and the convergence of latent heat transport. Airmass trajectory analysis is consistent with these findings, as airmasses associated with extreme cold events typically originate over continents, while warm events tend to occur with prevailing maritime airmasses. Despite Arctic‐wide warming, significant cooling has occurred in northeastern Europe owing to a decrease in adiabatic subsidence heating in airmasses arriving from the southeast, along with increased occurrence of circulation patterns favouring low temperature advection. These dynamic effects dominated over the increased mean temperature of most circulation patterns. Lagged correlation analysis reveals that SCA‐ and NAO+ are typically preceded by cold Arctic anomalies during the previous 2–3 months, which may aid seasonal forecasting.

     
    more » « less