skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arctic warming and your weather: public belief in the connection: ARCTIC WARMING AND YOUR WEATHER
Award ID(s):
1239783
PAR ID:
10027613
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Climatology
Volume:
34
Issue:
5
ISSN:
0899-8418
Page Range / eLocation ID:
1723 to 1728
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the response of the large‐scale atmospheric circulation to climatic change remains a key challenge. Specifically, changes in the equator‐to‐pole temperature difference have been suggested to affect the midlatitudes, potentially leading to more persistent extreme weather, but a scientific consensus has not been established so far. Here we quantify summer weather persistence by applying a tracking algorithm to lower tropospheric vorticity and temperature fields to analyze changes in their propagation speeds. We find significant links between slower propagating weather systems and a weaker equator‐to‐pole temperature difference in observations and models. By end of the century, the propagation of temperature anomalies over midlatitude land is projected to decrease by −3%, regionally strongest in southern North America (−45%) under a high emission scenario (CMIP5 RCP8.5). Even higher decreases are found (−10%, −58%) in models which project a decreasing equator‐to‐pole temperature difference. Our findings provide evidence that hot summer weather might become longer‐lasting, bearing the risk of more persistent heat extremes. 
    more » « less
  2. Abstract The Arctic’s rapid sea ice decline may influence global weather patterns, making the understanding of Arctic weather variability (WV) vital for accurate weather forecasting and analyzing extreme weather events. Quantifying this WV and its impacts under human-induced climate change remains a challenge. Here we develop a complexity-based approach and discover a strong statistical correlation between intraseasonal WV in the Arctic and the Arctic Oscillation. Our findings highlight an increased variability in daily Arctic sea ice, attributed to its decline accelerated by global warming. This weather instability can influence broader regional patterns via atmospheric teleconnections, elevating risks to human activities and weather forecast predictability. Our analyses reveal these teleconnections and a positive feedback loop between Arctic and global weather instabilities, offering insights into how Arctic changes affect global weather. This framework bridges complexity science, Arctic WV, and its widespread implications. 
    more » « less
  3. Vast amounts of organic carbon are stored in Arctic soils. Much of this is in the form of peat, a layer of decomposing plant matter. Arctic wildfires release this carbon to the atmosphere as carbon dioxide (CO 2 ) ( 1 ) and contribute to global warming. This creates a feedback loop in which accelerated Arctic warming ( 2 ) dries peatland soils, which increases the likelihood of bigger, more frequent wildfires in the Arctic and releases more CO 2 , which further contributes to warming. Although this feedback mechanism is qualitatively understood, there remain uncertainties about its details. On page 532 of this issue, Descals et al. ( 3 ) analyze data from the 2019 and 2020 wildfire seasons in the Siberian Arctic and predict the extent of carbon-rich soils likely to burn in the area with future warming. Critically, they suggest that even minor increases in temperature above certain thresholds may promote increasingly larger wildfires. 
    more » « less