Abstract Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back‐to‐back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef‐building coralOrbicella faveolata. Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRADand profiled for algal symbiont abundance and type.O. faveolataat the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerantDurusdinium trenchii(formerlySymbiondinium trenchii) was the dominant endosymbiont type region‐wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated byD. trenchii. 2bRADhost genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion ofD. trenchiiwas attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably,D. trenchiiwas rarely dominant inO. faveolatafrom the Florida Keys in previous studies, even during bleaching. The region‐wide high abundance ofD. trenchiiwas likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys,O. faveolatawas most abundant, had the highest bleaching resistance, and contained the most corals dominated byD. trenchii, illustrating a causal link between heat tolerance and ecosystem resilience with global change. 
                        more » 
                        « less   
                    
                            
                            Species‐specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs
                        
                    
    
            Abstract Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) andCO2partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data andIPCC AR5 ensemble climate model data. Three of the four most abundant species,Orbicella faveolata, Montastraea cavernosa,andPorites astreoides, had negative calcification responses to both elevated temperature andpCO2. In the business‐as‐usualCO2emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates.Siderastrea siderea, the other most common species, was insensitive to both temperature andpCO2within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reducedCO2emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species likeS. sidereaare not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reducedCO2emissions can limit future declines in reef calcification. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 0550588
- PAR ID:
- 10027256
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 1023-1035
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Reproduction, embryological development, and settlement of corals are critical for survival of coral reefs through larval propagation. Yet, for many species of corals, a basic understanding of the early life‐history stages is lacking. In this study, we report our observations forex situreproduction in the massive reef‐building coralPoritescf.P. lobataacross 2 years. Spawning occurred in April and May, on the first day after the full moon with at least 2 h of darkness between sunset and moonrise, on a rising tide. Only a small proportion of corals observed had mature gametes or spawned (14–35%). Eggs were 185–311 μm in diameter, spherical, homogenous, and provisioned with 95–155 algal cells (family Symbiodiniaceae). Males spawned before females, andex situfertilization rates were high for the first 2 h after egg release. Larvae were elliptical, ~300 μm long, and symbiotic. Just 2 days after fertilization, many larvae swam near the bottom of culture dishes and were competent to settle. Settlers began calcification 2 days after metamorphosis, and tentacles were developed 10 days after attachment. Our observations contrast with previous studies by suggesting an abbreviated pelagic larval period inPoritescf.P. lobata, which could lead to the isolation of some populations. The high thermal tolerance and broad geographic range ofPoritescf.P. lobatasuggest that this species could locally adapt to a wide range of environmental conditions, especially if larvae are locally retained. The results of this study can inform future work on reproduction, larval biology, dispersal, and recruitment inPoritescf.P. lobata, which could have an ecological advantage over less resilient coral species under future climate change.more » « less
- 
            Abstract AimsBryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (GPH,GSPH). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes. Study SiteSpruce–fir forests on Whiteface Mountain, NY,USA. MethodsWe characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFTs). We testedGPHandGSPHrelative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis) using indicator species analysis, ordination, and regression. ResultsCanopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. TheGPHwas consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens,Hypnum imponens, andTetraphis pellucida), and (b)FDisbased on threePFTs (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPHin the remaining species or traits, or forGSPHin general; gap width (12–44 m) was not related to environmental or bryophyte community gradients. ConclusionsThe observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities.more » « less
- 
            Summary Traditionally, leaves were thought to be supplied withCO2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO2that is assimilated, vs simply lost to transpiration.Cut leaves ofPopulus deltoidesandBrassica napuswere placed in eitherKCl or one of three [NaH13CO3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO2exiting the leaf across light andCO2response curves in real‐time using a tunable diode laser absorption spectroscope.The rates of assimilation and efflux of xylem‐transportedCO2increased with increasing xylem [13CO2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO2accounted forc.2.5% of the total assimilation in both species in the highest [13CO2*].The majority of xylem‐transportedCO2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO2comprises a small portion of total photosynthesis, but may be more important whenCO2is limiting.more » « less
- 
            Societal Impact StatementThe invasive speciesS. alternifloraandP. australisare fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found thatSpartinaandPhragmitesincrease methane but not nitrous oxide emissions, withPhragmiteshaving a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates. SummaryGlobally,Spartina alternifloraandPhragmites australisare among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats.We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands.Our results show that both invasive species increase CH4fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2and N2O fluxes. The magnitude of emissions fromSpartinaandPhragmitesdiffers among native habitats. GHG fluxes, soil carbon and plant biomass ofSpartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4).This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
