skip to main content


Title: Secondary anchor targeted cell release: Secondary Anchor Targeted Cell Release
Award ID(s):
1512598
NSF-PAR ID:
10027331
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
112
Issue:
11
ISSN:
0006-3592
Page Range / eLocation ID:
2214 to 2227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Precision medicine requires high throughput cell isolation and measurement that maintains physiology. Unfortunately, many techniques are slow or alter cell biomarkers cells. This necessitates new approaches, which we achieve by integrating affinity‐based cell isolation with spiral microfluidics. We characterize the device via computational simulations, predicting wall shear stress within an order of magnitude of arterial wall shear stress (~0.2 Pa). We identify that poly‐l‐lysine supplementation preserves cell geometry and improves cell release. We demonstrate preservation of angiogenic biomarker concentrations, measuring 1,000–2,000 vascular endothelial growth factor receptor‐1 per human umbilical vein endothelial cell, which is in line with the previously reported measurements. We attain 76.7 ± 9.0% release of captured cells by integrating thermophoresis and optimizing buffer residence time. Ultimately, we find that combining affinity‐based cell isolation (secondary anchor targeted cell release) with spiral microfluidics offers a fast, biomarker preserving approach needed to individualize medicine.

     
    more » « less
  2. null (Ed.)
  3. The transformations of complex metal oxides in aqueous settings must be studied to form a chemical understanding of how technologically relevant nanomaterials impact the environment upon disposal. Owing to the inherent heterogeneity and structural complexity of the ternary intercalation material Li(NixMnyCo1-x-y)O2 (NMC), the mechanisms of chemical processes at the solid–water interface are challenging to model. Here, density functional theory (DFT) + solvent ion methodology is used to study the energetics of stepwise release of two surface metals following unique pathways. The study spans different combinations of metal removal and also considers unique patterns of defects formed by modeling the NMC surface in supercells. The approach here also considers the equilibration of the surface with the surroundings between successive metal removals. A key finding is that a second metal removal prefers to proceed at a metal lattice site adjacent to the initial defect, and this is attributed in part to how the resulting slab with two metal vacancies maintains the most antiferromagnetic couplings between the remaining Ni/Mn. 
    more » « less