skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching Materials Science and Engineering (MSE) in the Pre-College Classroom as a Vehicle for NGSS Implementation
ABSTRACT Adoption of Materials Science and Engineering (MSE) into the pre-college classroom is an ideal strategy for addressing Next Generation Science Standards (NGSS), specifically the Science and Engineering Practices. MSE offers core science and engineering topics that can be incorporated into existing Science, Technology, Engineering, and Mathematic (STEM) curricula through teaching modules. Using MSE as a teaching vehicle, the Center for Research on Interface Structures and Phenomena (CRISP) conducted a series of small-scale studies of its teacher professional development workshops and a student summer program, along with related teaching modules, in an effort to measure the contribution MSE has on students and K-12 STEM educators. Based on participant survey feedback, CRISP found improvement in students’ MSE knowledge, interests, and career goals. For teachers, in addition to improving their MSE knowledge, they also increased their comfort and confidence in teaching MSE concepts in their classroom. These results provide evidence for the use of MSE modules as productive teaching tools for NGSS Science and Engineering Practices, as well as producing workforce-competitive STEM students.  more » « less
Award ID(s):
1663296
PAR ID:
10028091
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
MRS Advances
Volume:
2
Issue:
31-32
ISSN:
2059-8521
Page Range / eLocation ID:
1661 to 1666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This complete research paper details an investigation into the influence of instructors' pedagogical knowledge on their classroom practices in the context of teaching first-year engineering courses. Background and Motivation: First-year engineering courses serve as the foundational setting in which students are introduced to the field of engineering as well as the pedagogies specific to engineering teaching and learning. These courses are pivotal in equipping students with essential knowledge and skills, setting the stage for their success in more advanced engineering topics. Understanding how instructors' pedagogical knowledge affects their teaching practices is crucial. Pedagogical knowledge encompasses a wide range of techniques to effectively manage a classroom and engage students. This includes the use of instructional strategies that cater to diverse student needs, the design of impactful and engaging lesson plans, etc. There is, however, limited research on how instructors’ pedagogical knowledge influences their classroom practices in first-year engineering courses. Hence, it seems opportune and essential to conduct additional research on engineering instructors' classroom practices. Research Question: The central question driving this research is: How does instructors' pedagogical knowledge influence their pedagogical practices for first-year engineering courses? Method: For this study, we chose the model of teacher professional knowledge and skill (TPK&S) that includes pedagogical content knowledge (PCK). The model recognizes the fundamental importance of pedagogical knowledge and contextualizes PCK within that framework, encompassing the intricate nature of teaching and learning. A descriptive case study was utilized as a methodology for this work to delve into the phenomenon. The context of the study was a first-year introductory engineering course offered at a large public research institution. This is a pilot study for an NSF-funded project (blinded for review), the study involved two instructors, Chandler and Joey (pseudonyms), chosen through purposive sampling, with varying levels of teaching experience. Data collection involved direct classroom observation using the Teaching Dimensions Observation Protocol (TDOP) and semi-structured interviews conducted after the observations. The interviews were conducted after classroom observations, allowing the researcher to explore specific findings from the observations. Results: Thematic analysis was used to categorize the data based on the constructs of the theoretical framework. The analysis revealed three major themes: (a) Instructors' topic-specific professional knowledge significantly influences their pedagogical practices. Both instructors adapt their teaching methods based on their understanding of course material and students' difficulties. (b) The interaction between instructors' personal pedagogical content knowledge (PCK) and the classroom context shapes their classroom practices. (c) Instructors' beliefs and prior knowledge act as amplifiers or filters based on the situation. They filter out their teaching practices that do not align with their beliefs and prior knowledge. Conclusion: The findings presented in this paper provide valuable insights into the complex interplay between instructors' pedagogical knowledge and their classroom practices. This work holds significant implications for current and future first-year instructors in that this paper will showcase how instructors use their understanding of the content and their students to teach, which is a critical aspect of helping students successfully integrate into engineering. 
    more » « less
  2. To support teachers in providing all students with opportunities to engage in engineering learning activities, research must examine the ways that elementary teachers support how diverse learners engage with engineering ideas and practices. This study focuses on two teachers' verbal supports in classroom discussions across two class sections of a four-week, NGSS-aligned unit that challenged students to redesign their school to reduce water runoff. We examine the research question: How and to what extent do upper-elementary teachers verbally support students' engagement with engineering practices across diverse classroom contexts in an NGSS-aligned integrated science unit? Classroom audio data was collected daily and coded to analyze support through different purposes of teacher talk. Results reveal the purpose of teachers’ talk often varied between the class sections depending on the instructional activity and indicate that teachers utilized a variety of supports toward students' engagement in different engineering practices. In one class, with a large percentage of students with individualized educational plans, teachers provided more epistemic talk about the engineering practices to contextualize the particular activities. For the other class, with a large percentage of students in advanced mathematics, teachers provided more opportunities for students to engage in discussion and support for students to do engineering. This difference in supports may decrease the opportunities for some students to rigorously engage in engineering ideas and practices. This study can inform future research on the kinds of educative supports needed to guide teaching of integrated engineering activities for diverse students. 
    more » « less
  3. Despite the intent to advance engineering education with the NGSS, teachers across all grade levels lack confidence in their engineering content knowledge and pedagogy (Hammack & Ivey, 2019). This dilemma is exacerbated by a lack of quality NGSS-aligned curricular materials that integrate science and engineering at the elementary grades— currently, only one elementary unit reviewed by Achieve has received an NGSS Design Badge that includes engineering (NextGenScience, 2020), and these materials are especially unavailable in schools serving high-needs students (Banilower, 2019). Implementation research now acknowledges that contexts and conditions can, and often do, affect the enactment of innovations and that “improving education requires processes for changing individuals, organizations, and systems” (Century & Cassata, 2016, p. 172). Due to geographic location and, often, smaller collegial networks of teachers who teach science, and engineering, rural schools encounter acute challenges in recruiting and retaining teachers (Arnold et al., 2005) and providing content-specific Professional Learning (PL) (Harmon & Smith, 2007). The goal of this NSF DRK12 multi-institution project is to longitudinally investigate the impacts, sustainability, and costs of NGSS implementation, especially in rural contexts. Our approach differs from most interventions in that it is tailored to rural educators in grades 3–5 and offers curriculum-agnostic, fully online PL that supports teachers in utilizing resources and phenomena found in their local contexts to develop and implement engaging, NGSS-aligned engineering instruction. Our intervention began with a five-day (i.e., weeklong) online PL experience in the summer of 2023 for grades 3–5 teachers in each of four western states. Examples of PL sessions provided include: (1) an overview of three-dimensional learning and phenomena-based instruction; (2) a deep dive into the NGSS Science and Engineering Practices (SEPs); (3) instructional practices that encourage equitable student participation and epistemic agency; and (4) building understanding and comfort with NGSS-aligned engineering and design-based instruction for the elementary grades. The initial intensive PL experience had immediate positive impacts on grades 3–5 teachers’ attitudes and efficacy for teaching engineering. We are now exploring how modest supports influence the sustainability of these changes. Over the 2023-2024 academic year, we are providing teachers with a menu of modest supports including: three 90-minute-long online PL meetings each semester, materials for teaching a locally focused engineering design task, and access to a variety of electronic supports (e.g., Google Classroom Site, shared resources). The fall semester online meetings have focused on supporting teachers to identify connections to science and engineering in their school’s community and how to develop NGSS-aligned engineering design tasks that connect to their local communities. Teachers will be implementing their engineering lessons during December 2023 and January 2024. 
    more » « less
  4. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less
  5. Engineering Explorations are curriculum modules that engage children across contexts in learning about science and engineering. We used them to leverage multiple education sectors (K–12 schools, museums, higher education, and afterschool programs) across a community to provide engineering learning experiences for youth, while increasing local teachers’ capacity to deliver high-quality engineering learning opportunities that align with school standards. Focusing on multiple partners that serve youth in the same community provides opportunities for long-term collaborations and programs developed in response to local needs. In a significant shift from earlier sets of standards, the Next Generation Science Standards include engineering design, with the goal of providing students with a foundation “to better engage in and aspire to solve the major societal and environmental challenges they will face in decades ahead” (NGSS Lead States 2013, Appendix I). Including engineering in K–12 standards is a positive step forward in introducing students to engineering; however, K–12 teachers are not prepared to facilitate high-quality engineering activities. Research has consistently shown that elementary teachers are not confident in teaching science, especially physical science, and generally have little knowledge of engineering (Trygstad 2013). K–12 teachers, therefore, will need support. Our goal was to create a program that took advantage of the varied resources across a STEM (science, technology, engineering, and math) education ecosystem to support engineering instruction for youth across multiple contexts, while building the capacity of educators and meeting the needs of each organization. Specifically, we developed mutually reinforcing classroom and field trip activities to improve student learning and a curriculum to improve teacher learning. This challenging task required expertise in school-based standards, engineering education, informal education, teacher professional development, and classroom and museum contexts. 
    more » « less