skip to main content

Title: An Entrepreneurship Education Co-Curricular Program to Stimulate Entrepreneurial Mindset in Engineering Students
ABSTRACT There is a need to expand the fundamental skills in science and engineering to include innovation & entrepreneurship (I&E) skills as core competencies. To better prepare the future Nanotechnology workforce, the University of Puerto Rico-Mayagüez Nanotechnology Center, broadened the educational content beyond traditional skills in science and engineering. The Center, offers a rich educational program for materials and nano scientists that aims to create the next generation of knowledgeable, experienced professionals, and successful entrepreneurs, who can develop value-added innovations that can spur economic growth and continue to impact the quality of life for society. Within the educational program an Entrepreneurship Education Co-Curricular Program (EEP) incorporates I&E training into the Materials Science, Nanotechnology, STEM (Science, Technology, Engineering, and Mathematics) faculty and student experiences. The EEP consists of a two-year series of workshops that seek to develop an entrepreneurial mindset, including five key topics: 1) Generation of Ideas, 2) Entrepreneurial Vision, 3) Early Assessment of Ideas, 4) Identification of Opportunities, and 5) Strategic Thinking. The EEP goals, target audience, and implementation strategy, is described with an evaluation tool to assess the program’s success in developing an entrepreneurial mindset.
Authors:
; ; ;
Award ID(s):
1663296
Publication Date:
NSF-PAR ID:
10028093
Journal Name:
MRS Advances
Volume:
2
Issue:
31-32
Page Range or eLocation-ID:
1673 to 1679
ISSN:
2059-8521
Sponsoring Org:
National Science Foundation
More Like this
  1. Entrepreneurial education has been rapidly expanding within universities over the past 15 years with colleges of engineering being amongst the most active participants in embedding entrepreneurship into curricular and cocurricular activities (Pittaway & Cope, 2007). Well-developed and theoretically grounded educational interventions have been shown to increase entrepreneurial skills and perception among students. (Pittaway & Cope, 2007; Matlay & Caray, 2007; Duval-Couetil & Wheadon, 2013; Duval-Couetil & Rheed-Roads, 2012). Organizations including the National Science Foundation through the Lean Launch Curriculum and I-Corps program, VentureWell through curriculum development grants and their E-Team program, and the Kern Family Foundation through the Kern Entrepreneurial Education Network (KEEN) have provided significant funding to embed and transform entrepreneurial teaching and practice into colleges of engineering (Matthew et al., 2017; Pistrui, Blessing & Mekemson, 2008; Smith et al. 2017). This activity combines with an added emphasis among engineering programs to develop an entrepreneurial mindset among their engineering students with the belief that this will lead to them being more productive and innovative whether their career path leads them into established industry (becoming “intrapreneurs”) or later as entrepreneurs. While this trend toward developing more entrepreneurially minded engineering students is supported by global economic trends and a rapidly changingmore »work environment, one factor has been largely overlooked in this process. Statistically, most entrepreneurial ventures fail, with disproportionately large value being created from a minority of entrepreneurial endeavors (Coats, 2019). Given this fact, until we find ways to drastically increase the success rate of entrepreneurial ventures, as we increase engineering students’ exposure to entrepreneurship, we are also increasing their exposure to failure very early in their careers. With this exposure, it is unknown whether sufficient preparation and education around project/venture failure is occurring to properly equip entrepreneurially minded engineering students to learn and grow from entrepreneurial failure. In this work in progress study, current and former engineering students who formed entrepreneurial ventures and experienced either failure of the venture or significant failure during the venture are interviewed to better understand the influences that led to both adaptive and maladaptive responses to these failures. Participants have been selected from those that have received funding through the national VentureWell E-Team program. This program awards three levels of funding and provides mentorship, training, and networking for the teams. The study uses the framework developed by Henry, Shorter, Charkoudian, Heemstra, and Corwin (2018) in which they associate pre-failure dispositions related to fixed and growth mindset (Dweck, 2000, 2006) and mastery vs. performance disposition (Pintrich, 2000 a, b). Our work will utilize this framework to guide the research, but more importantly will provide a unique context for analysis, specifically within engineering entrepreneurship, which will add to the body of work and expand the understanding of this pre-failure/post-failure disposition framework. Initial interview data and analysis will be presented in the context of this framework with preliminary insights to be shared with those in the field.« less
  2. Historically Black Colleges and Universities (HBCUs) innovators lag behind their non-HBCU counterparts in the commercialization of innovations as they were originally set up as teaching and blue-collar trade institutions. There exists a strong need for education and training to bridge this gap by promoting the commercialization of innovations in HBCUs and thus transform next-generation HBCU innovators into entrepreneurs. HBCUs are promoting entrepreneurial education and mindset via changes in engineering education programs and curriculums. Several federally funded programs like the National Science Foundation (NSF) Center of Research Excellence in Science and Technology (CREST) Center for Nanotechnology Research Excellence (CNRE) are promoting innovation and intellectual property generation at HBCUs. NSF I-Corps Program supports the education and training of innovators about the commercialization of mature or patented innovations at HBCUs. The NSF I-Corps Introduction to Customer Discovery explores strategies in identifying key customer segments through extensive customer interviews, which is a fundamental step in the commercialization process. This paper discusses our educational experience in the customer discovery process for Pumpless Solar Thermal Air Heater (Patent Number 10775058). To learn about prospective customers’ attitudes and perceptions of the innovation, we conducted 30 interviews with potential customers (end users). Our innovation is focused on providingmore »portable, cost-effective, healthy, and environmentally friendly space heating solutions. We tested several hypotheses about the value proposition of our innovation during interviews to explore the market segments for potential commercialization. During the Customer Discovery process, we came to know about new issues such as health issues caused by the dry air in winter. We also learned that mitigation of problems due to the current heating system required a humidifier to reduce health issues that added additional cost. Based on our interviews our innovation is suitable for customers needing: (i) Heating source mitigating health issues, (ii) add-on technology to reduce their heating bills. Our next step is to pursue market segments for our innovation. We plan to utilize the current experience of commercialization of intellectual property to develop training modules for the MECH 302 Undergraduate Research Experience and MECH 500 Research Methods and Technical Communication courses offered under the mechanical engineering program at the University of the District of Columbia (UDC).« less
  3. In today’s global market economy, equipping engineering students with a broader set of skills associated with an entrepreneurial mindset will empower them to create value for the companies they join or to launch their own startups. In recent years, institutions across the nation have been investing resources in developing maker spaces plus curricular and extracurricular programs to provide opportunities for students to acquire knowledge and skills, and pursue innovative ideas in a safe environment – while still in college. This study presented assessment data from a NSFI-Corps site program at a Southwestern university to understand the impact of the program on undergraduate and graduate engineering students’ knowledge, perceptions, and practice of entrepreneurship. In the four-cohort assessment data, participants indicated significantly increased confidence in value proposition, self-efficacy in entrepreneurship, and customer discovery, while maintaining high interest in entrepreneurship. Furthermore, the data indicated that participants with a GO decision (to continue pursuing their technology) had significantly higher perception on the current status of technology and business model than did participants with a no-GO/unsure decision. In addition, this study presented a new pilot program to be offered in spring 2020 and aimed to further enhance the I-Corps Site efforts on campus for broadermore »impacts.« less
  4. Abstract
    Between 2018 and 2021 PIs for National Science Foundation Awards # 1758781 and 1758814 EAGER: Collaborative Research: Developing and Testing an Incubator for Digital Entrepreneurship in Remote Communities, in partnership with the Tanana Chiefs Conference, the traditional tribal consortium of the 42 villages of Interior Alaska, jointly developed and conducted large-scale digital and in-person surveys of multiple Alaskan interior communities. The survey was distributed via a combination of in-person paper surveys, digital surveys, social media links, verbal in-person interviews and telephone-based responses. Analysis of this measure using SAS demonstrated the statistically significant need for enhanced digital infrastructure and reworked digital entrepreneurial and technological education in the Tanana Chiefs Conference region. 1. Two statistical measures were created during this research: Entrepreneurial Readiness (ER) and Digital Technology needs and skills (DT), both of which showed high measures of internal consistency (.89, .81). 2. The measures revealed entrepreneurial readiness challenges and evidence of specific addressable barriers that are currently preventing (serving as hindrances) to regional digital economic activity. The survey data showed statistically significant correlation with the mixed-methodological in-person focus groups and interview research conducted by the PIs and TCC collaborators in Hughes and Huslia, AK, which further corroborated stated barriers toMore>>
  5. In 2011, the National Science Foundation launched the I-Corps Program and as of today close to one hundred institutions are participating through Nodes or Sites program. While both program focus on providing training and funds to accelerate the implementation of innovative ideas to market, they have different implementation models and thus challenges. For I-Corps Sites, while each institution utilizes similar approaches on the implementation, including an I-Corps team formation, knowledge and skills training, customer discovery and guidance from experienced entrepreneurs, each ecosystem is unique because the program outcomes are closely related to the entrepreneurial culture both on campus and also in the surrounding local community. A major challenge for Sites is recruiting quality teams and having access to qualified mentors to provide guidance to teams. In this paper, we will present the implementation of a Site in a large public institution located away from a large metropolitan area, the challenges we addressed both in recruiting teams and mentors, and how the program has evolved in its current state. In addition, authors will be able to present on data from the program evaluation which will include findings from pre- and post-quizzes on knowledge of entrepreneurship terms and pre- and post-program surveysmore »that captured changes in perceptions of entrepreneurship, such as interest in entrepreneurship, confidence in value position, and self-efficacy in entrepreneurship, marketing/business planning, and customer interview. In this paper, we will present data from five I-Corps Site cohorts representing close to fifty student teams. Since program participants represent a diverse group (33% females and 15% ethnic minorities) and also wide range of educational levels (freshman to graduate students), we are able to evaluate program impact also with respect to gender, race/ethnicity, and classification. This paper will provide valuable information for institutions interested in pursuing an I-Corps grant and to those who are already have a grant but are looking for additional ways to further enhance program impact on their campus.« less