skip to main content

Title: Qualitative Investigation on the Failure Experiences of Entrepreneurial Engineering Students
Entrepreneurial education has been rapidly expanding within universities over the past 15 years with colleges of engineering being amongst the most active participants in embedding entrepreneurship into curricular and cocurricular activities (Pittaway & Cope, 2007). Well-developed and theoretically grounded educational interventions have been shown to increase entrepreneurial skills and perception among students. (Pittaway & Cope, 2007; Matlay & Caray, 2007; Duval-Couetil & Wheadon, 2013; Duval-Couetil & Rheed-Roads, 2012). Organizations including the National Science Foundation through the Lean Launch Curriculum and I-Corps program, VentureWell through curriculum development grants and their E-Team program, and the Kern Family Foundation through the Kern Entrepreneurial Education Network (KEEN) have provided significant funding to embed and transform entrepreneurial teaching and practice into colleges of engineering (Matthew et al., 2017; Pistrui, Blessing & Mekemson, 2008; Smith et al. 2017). This activity combines with an added emphasis among engineering programs to develop an entrepreneurial mindset among their engineering students with the belief that this will lead to them being more productive and innovative whether their career path leads them into established industry (becoming “intrapreneurs”) or later as entrepreneurs. While this trend toward developing more entrepreneurially minded engineering students is supported by global economic trends and a rapidly changing work more » environment, one factor has been largely overlooked in this process. Statistically, most entrepreneurial ventures fail, with disproportionately large value being created from a minority of entrepreneurial endeavors (Coats, 2019). Given this fact, until we find ways to drastically increase the success rate of entrepreneurial ventures, as we increase engineering students’ exposure to entrepreneurship, we are also increasing their exposure to failure very early in their careers. With this exposure, it is unknown whether sufficient preparation and education around project/venture failure is occurring to properly equip entrepreneurially minded engineering students to learn and grow from entrepreneurial failure. In this work in progress study, current and former engineering students who formed entrepreneurial ventures and experienced either failure of the venture or significant failure during the venture are interviewed to better understand the influences that led to both adaptive and maladaptive responses to these failures. Participants have been selected from those that have received funding through the national VentureWell E-Team program. This program awards three levels of funding and provides mentorship, training, and networking for the teams. The study uses the framework developed by Henry, Shorter, Charkoudian, Heemstra, and Corwin (2018) in which they associate pre-failure dispositions related to fixed and growth mindset (Dweck, 2000, 2006) and mastery vs. performance disposition (Pintrich, 2000 a, b). Our work will utilize this framework to guide the research, but more importantly will provide a unique context for analysis, specifically within engineering entrepreneurship, which will add to the body of work and expand the understanding of this pre-failure/post-failure disposition framework. Initial interview data and analysis will be presented in the context of this framework with preliminary insights to be shared with those in the field. « less
Authors:
Award ID(s):
2024570
Publication Date:
NSF-PAR ID:
10287565
Journal Name:
2021 ASEE Virtual Annual Conference Content Access
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT There is a need to expand the fundamental skills in science and engineering to include innovation & entrepreneurship (I&E) skills as core competencies. To better prepare the future Nanotechnology workforce, the University of Puerto Rico-Mayagüez Nanotechnology Center, broadened the educational content beyond traditional skills in science and engineering. The Center, offers a rich educational program for materials and nano scientists that aims to create the next generation of knowledgeable, experienced professionals, and successful entrepreneurs, who can develop value-added innovations that can spur economic growth and continue to impact the quality of life for society. Within the educational program an Entrepreneurship Education Co-Curricular Program (EEP) incorporates I&E training into the Materials Science, Nanotechnology, STEM (Science, Technology, Engineering, and Mathematics) faculty and student experiences. The EEP consists of a two-year series of workshops that seek to develop an entrepreneurial mindset, including five key topics: 1) Generation of Ideas, 2) Entrepreneurial Vision, 3) Early Assessment of Ideas, 4) Identification of Opportunities, and 5) Strategic Thinking. The EEP goals, target audience, and implementation strategy, is described with an evaluation tool to assess the program’s success in developing an entrepreneurial mindset.
  2. Background: The National Science Foundation (NSF) and other organizations have spent millions of dollars each year supporting well-designed educational innovations that positively impact the undergraduate engineering students who encounter them. However, many of these pedagogical innovations never experience widespread adoption. To further the ability of innovation developers to advance engineering education practice and achieve sustained adoption of their innovations, this paper explores how one community-based model, engineering education guilds, fosters propagation across institutions and individuals. Engineering education guilds seek to work at the forefront of educational innovation by creating networks of instructor change-agents who design and implement a particular innovation in their own context. The guilds of interest are the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN). With these guilds as exemplars, this study’s purpose is (1) to articulate how the approaches of engineering education guilds align with existing literature on supporting sustained adoption of educational innovations and (2) to identify how these approaches can advance the science, technology, engineering and math (STEM) education community’s discussion of propagation practices through the use of the Designing for Sustained Adoption Assessment Instrument (DSAAI). The DSAAI is a conceptual framework based on research in sustainedmore »adoption of pedagogical innovations. It has previously been used in the form of a rubric to analyze dissemination and propagation plans of NSF educational grant recipients and was shown to predict the effectiveness of those propagation plans. Results: Through semi-structured interviews with two leaders from each guild, we observed strong alignment between the structures of CRPEE and KEEN and evidence-based sustained adoption characteristics. For example, both guilds identified their intended audience early in their formation, developed and implemented extensive plans for engaging and supporting potential adopters, and accounted for the complexity of the higher education landscape and their innovations in their propagation plans. Conclusions: Our results suggest that guilds could provide another approach to innovation, as their structures can be aligned with evidence-based methods for propagating pedagogical innovations. Additionally, while the DSAAI captures many of the characteristics of a welld-esigned propagation strategy, there are additional components that emerged as successful strategies used by the CPREE and KEEN guild leaders. These strategies, including having mutual accountability among adopters and connecting adoption of innovations to faculty reward structures in the form of recognition and funding should be considered as educational innovators work to encourage adoption of their innovations.« less
  3. Engineering education guilds, such as the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN), seek to work at the forefront of educational innovation by creating networks of instructor change agents who design and implement a particular innovation in their own context to further the professional formation of engineers (PFE). While many of the innovations facilitated by CPREE and KEEN have been published extensively, it is unclear how successful the propagation of reflection and entrepreneurial mindset has been in the engineering education community. The major aim of this project is to characterize these two engineering education guilds with respect to their dissemination/propagation plans and, in the future, quantify the propagation of the innovations championed by CPREE and KEEN. The research questions we seek to answer in this paper are: (1) What are the planned dissemination/propagation approaches of well-established engineering education guilds? and (2) To what extent do their characteristics align with the Designing for Sustained Adoption Assessment Instrument (DSAAI)? The DSAAI was developed in 2016 to provide education developers, grant writing consultants, and funding agencies with a tool for assessing the propagation plans of researchers developing educational change strategies. To answer these questions, wemore »conducted semi-structured interviews with the leaders of CPREE and KEEN. The transcriptions of the interviews will be used to create within-case reports for each guild. The within-case reports will consist of a rich description of the pedagogical innovation as well as the history of the guild and its goals. Using the DSAAI, we will qualitatively code the techniques that each guild is using to facilitate widespread adoption as well as the extent to which they are following a dissemination or propagation paradigm. Lastly, thematic analysis will be used to capture emerging themes that arise from the interviews.« less
  4. Navigating scientific challenges, persevering through difficulties, and coping with failure are considered hallmarks of a successful scientist. However, relatively few studies investigate how undergraduate science, technology, engineering, and mathematics (STEM) students develop these skills and dispositions or how instructors can facilitate this development in undergraduate STEM learning contexts. This is a critical gap, because the unique cultures and practices found in STEM classrooms are likely to influence how students approach challenges and deal with failures, both during their STEM education and in the years that follow. To guide research aimed at understanding how STEM students develop a challenge-engaging disposition and the ability to adaptively cope with failure, we generate a model representing hypotheses of how students might approach challenges and respond to failures in undergraduate STEM learning contexts. We draw from theory and studies investigating mindset, goal orientations, attributions, fear of failure, and coping to inform our model. We offer this model as a tool for the community to test, revise, elaborate, or refute. Finally, we urge researchers and educators to consider the development, implementation, and rigorous testing of interventions aimed at helping students develop a persevering and challenge-engaging disposition within STEM contexts.
  5. This study examines the roots of entrepreneurial career goals among today’s U.S. undergraduate engineering students. Extensive literature exists on entrepreneurship education and on students’ career decision making, yet little work connects the two. To address this gap, we explore a sample of 5,819 undergraduate engineering students from a survey administered in 2015 to a nationally representative set of twenty-seven U.S. engineering schools. We identify how individual background measures, occupational learning experiences, and socio-cognitive measures such as self-efficacy beliefs, outcome expectations, and interest in innovation and entrepreneurship affect students’ entrepreneurial career focus. Based on career focus, the sample is split into “Starters” and “Joiners” where Starters are students who wish to start a new venture and Joiners are those who wish to join an existing venture. Results show the demographic, behavioral, and socio-cognitive characteristics of each group. Findings suggest that relative to Joiners, Starters have stronger occupational self-efficacy beliefs which are driven by higher interests in innovation-related activities and ascribing greater importance to involvement in innovation practices early in their careers. Additionally, the significant influence of particular learning experiences is discussed. These results have implications for engineering and entrepreneurship education. (This paper earned Best Research Paper Award, 3rd Place, in themore »ENT division.)« less